ORACLE

GraalVM: State of AArch64

Tom Shull

Senior Researcher
Oracle Labs

April 2, 2022

About Me

* Joined GraalVM Team in June 2020
e Work in Zirich Office
e Previously worked at Arm Ltd. on Graal Support

* Lead AArch64 development for GraalVM Compiler and Native Image
* Also work on general-purpose Native Image improvements

2 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Talk Outline

* Quick Description of AArch64 ISA

 High-Level Overview of Graal’s AArch64 Support
 Demo: Setting up Development Environment

* Walkthrough: Navigating AArch64 Codebase

* Graal AArch64 Performance Numbers

* Getting rid of Graal’'s AMDG64isms

* Future Improvements

3 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

State of AArch64 Ecosystem

* Note: | am only talking about AArch64 (ARM64), Arm’s 64-bit instruction set
* NOT referring to AArch32, Arm’s 32-bit architecture (ARM/A32 & Thumb/T32)

Timeline of Significant AArch64 Events

AArch64 Android 5.0
Announced Lollipop
10/2011 11/2014
Apple Intel discontinues
iPhone 5s Atom on Mobile
10/2012 04/2016

4 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

State of AArch64 Ecosystem

* Note: | am only talking about AArch64 (ARM64), Arm’s 64-bit instruction set
* NOT referring to AArch32, Arm’s 32-bit architecture (ARM/A32 & Thumb/T32)

Timeline of Significant AArch64 Events

Nvidia
AArch64 Android 5.0 AWS Grace CPU
Announced Lollipop Graviton Announced

10/2011 11/2014 11/2018 3/2021

Apple Intel discontinues Apple
iPhone 5s Atom on Mobile Aniicl)iconrc]ed
u
06/2020

5 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

State of AArch64 Ecosystem

* Note: | am only talking about AArch64 (ARM64), Arm’s 64-bit instruction set
* NOT referring to AArch32, Arm’s 32-bit architecture (ARM/A32 & Thumb/T32)

Timeline of Significant AArch64 Events

Nvidia
AArch64 Android 5.0 AWS Grace CPU
Announced Lollipop Graviton Announced
10/2011 11/2014 11/2018 3/2021
Apple Intel discontinues Apple Oracle OCI
iPhone 5s Atom on Mobile An.?\i(l)iconrcletjl AArch64 Support
u

06/2020

6 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

AArch64 ISA Overview

64-bit architecture with floating point & vector support

31 general purpose registers
* Also has zero (zr) and stack pointer (sp) registers

32 floating-point / vector registers
 ASIMD (NEON) vector length is 128-bits

All instructions are 32-bits (4-bytes) long
e Different from AMD64 (AMD®64 is variable length)
* Impact: less space for immediate encodings in AArch64 instructions

7 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

GraalVM Ecosystem

S,
<

Java

GraalVM.

High-performance optimizing
Just-in-Time (JIT) compiler

8 Copyright © 2022, Oracle and/or its affiliates

GraalVM.

£ 1

€ O ==
Ahead-of-Time (AOT) “Native

Image” generator

April 2, 2022

! = JS
o e

GraalVM.

R o
Q5 M

LLVM

Multi-language support

GraalVM Ecosystem

Java: Javar E\%
JS
‘ Linux-AArch64: Entire Ecosystem Works! @
GraalVV. GraalVM. GraalVM.

‘R 4
@y, M

High-performance optimizing Ahead-of-Time (AOT) “Native Multi-language support
Just-in-Time (JIT) compiler Image” generator

9 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

GraalVM Ecosystem

S, S,
= =
Java Javar .

‘ Darwin-AArch64: Compiler & Native Image Work

GraalVM.

JS
follow Github Issue 2666 (

, @-.

High-performance optimizing Ahead-of-Time (AOT) “Native Multi-language support
Just-in-Time (JIT) compiler Image” generator

Graal\l‘ Truffle support is still WIP

10 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://github.com/oracle/graal/issues/2666

Building & Developing Graal on AArch64

Build process is same as AMD64:
1. Clone graal repo

2. Clone mx repo and add to PATH

3. Get of copy of jvmci-enabled openjdk and set as JAVA_ HOME
* from labs-openjdk releases (labs 11) (labs 17)
e Alternative: use ‘'mx fetch-jdk --to [download_dir]

4. Use mx [--env setup or --dy imports] build"

Developing:
* Intellij, Eclipse work on both Linux and MacQOS
* use mxideinit’ | ‘'mx intellijinit’ | ‘mx eclipseinit’ to setup IDE project files

11 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://github.com/oracle/graal
https://github.com/graalvm/mx
https://github.com/graalvm/labs-openjdk-11/releases
https://github.com/graalvm/labs-openjdk-17/releases

Code Generation Process

® Graal Nodes in graph
e Conversion code mostly in LIRGenerator and LIRArithmeticGenerator

ValueNodes

L ialcicleiien s eCalls MacroAssembler within 'emitCode’ methods

Machine

e Emitted by MacroAssember and Assembler

Instructions

12 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Code Walkthrough References

e AddNode's generate
e AArch64ArithmeticLIRGenerator's emitAdd
e AArch64ArithmeticOp Add Enum

e (Calling assembler add instruction

e Assembler Add instruction

13 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/calc/AddNode.java
https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.core.aarch64/src/org/graalvm/compiler/core/aarch64/AArch64ArithmeticLIRGenerator.java
https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.lir.aarch64/src/org/graalvm/compiler/lir/aarch64/AArch64ArithmeticOp.java
https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.lir.aarch64/src/org/graalvm/compiler/lir/aarch64/AArch64ArithmeticOp.java
https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.asm.aarch64/src/org/graalvm/compiler/asm/aarch64/AArch64Assembler.java

Navigating AArch64 Codebase — Important Packages

Main AArch64 packages:

e org.graalvm.compiler.asm.aarch64: Calls for emitting AArch64 instructions

e org.graalvm.compiler.liraarch64: AArch64 LIRInstructions

e org.graalvm.compiler.core.aarch64: Logic for lowering Graal Nodes to LIRInstructions

e org.graalvm.compiler.hotspot.aarch64: HotSpot specific LIRInstruction generation hooks

e com.oracle.svm.core.graal.aarch64: Native Image specific LIRInstruction generation hooks

14 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Navigating AArch64 Codebase — Important Files

Emitting AArch64 Instructions

* AArch64Assembler

e AArch64MacroAssembler

e AArch64ASIMDAssembler
 AArch64ASIMDMacroAssembler

15 Copyright © 2022, Oracle and/or its affiliates

AArch64 LIR Instructions

 AArch64ArithmeticOp
* AArch64Move

* AArch64AtomicMove
 AArch6e4cCall
 AArch64 Compare

* AArch64ControlFlow

April 2, 2022

Node - LIRInstruction Lowering

* AArch64LIRGenerator

* AArch64ArithmeticLIRGenerator
* AArch64HotSpotBackend

* AArch64HotSpotLIRGenerator

e SubstrateAArch64Backend

Comparing AArch64 vs AMDG64 Optimizations

e Optimizations: equivalent*
* Same passes run within HighTier, MidTier, and LowTier phases

AArch64 (EE) also runs same Loop and Linear Vectorization passes
* AMD®64 can (potentially) benefit more due to bigger vector widths

*AMDG64 has more peephole optimizations (via LoweringProviders)

*Optimization heuristics are currently tuned for AMD64

* Intrinsics
 (Custom Nodes for efficient execution of select Java Methods)
 AArch64 is similar to AMD64

* See UnimplementedGraallntrinsics
* Also compare AArch64GraphBuilderPlugins and AMD64GraphBuilderPlugins

16 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://github.com/oracle/graal/blob/3d209e855de7f1d7a892f2962dbccd2e94038c3a/compiler/src/org.graalvm.compiler.hotspot/src/org/graalvm/compiler/hotspot/meta/UnimplementedGraalIntrinsics.java

Performance Comparisons

 Two sets of comparisons:
* Intel Ice Lake vs Ampere Altra
e Ampere Altra vs Apple M1 Pro

Company Intel Ampere Apple
Core Name Ice Lake Altra M1 Pro
Base Frequency 3 GHz 3 GHz ~2-3 GHz
cores (threads) 18 (36) 80 (80) 10 (10)

17 Copyright © 2022, Oracle and/or its affiliates

April 2, 2022

Comparing Intel Ice Lake and Ampere Altra

Raw times [ms] running Renaissance 0.11 on 36 cores for Ice Lake and Altra

Ice Lake: OracleJDK 11.0.11

Ice Lake: GraalVM EE 21.1 (JDK11)

Altra: OracleJDK 11.0.11

Altra: GraalVM EE 21.1 (JDK 11)

Geomean

1665 ms

1023 ms

2201 ms

1466 ms

GraalVM 21.1 (JDK 11) Speedup over OracleJDK 11.0.11

Ice Lake

Altra

1.628x

1.501x

18 Copyright © 2022, Oracle and/or its affiliates

April 2, 2022

e benchmark suite: renaissase 0.11

Raw Numbers « values are execution time [ms]

* both executions are limited to 36 logical cores
* |Ice Lake has 36 logical cores, 18 physical cores (2-way SMT)

Benchmark Ice Lake: OracleJDK 11.0.11 Ice Lake: GraalVM EE 21.1 (JDK11) Altra: OracleJDK 11.0.11 Altra: GraalVM EE 21.1 (JDK11)

akka-uct 9891 7903 14543 14815
als 2251 1257 3273 2290
chi-square 890 627 1237 754
dec-tree 1285 789 1639 1160
dotty 1849 1540 2216 1892
fi-kmeans 847 847 806 970
future-genetic 1611 1527 2262 1872
gauss-mix 851 517 1026 798
log-regression 1477 1424 1553 1511
mnemonics 4208 2020 4444 2567
movie-lens 5317 4271 27307 26107
naive-bayes 214 95 484 122
neo4j-analytics 6919 2185 4556 2766
page-rank 1125 984 1819 1801
par-mnemonics 3627 1611 4041 2171
philosophers 4693 4133 6426 5844
reactors 13636 10815 15792 15323
rx-scrabble 231 196 261 233
scala-doku 7593 2002 11050 3343
scala-kmeans 469 164 477 198
scala-stm-bench?7 1077 934 1279 1262
scrabble 120 30 158 24
geomean 1665 1023 2201 1466

19 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Comparing Altra and M1 Pro

20

Raw times [ms] running Renaissance 0.14 on 10 cores for Altra and M1 Pro

Altra GraalVM EE 22.0 (JDK 17)

M1 Pro GraalVM EE 22.0 (JDK 17)

Geomean

1624 ms

958 ms

M1 Pro Speedup over Altra 1.695x

Copyright © 2022, Oracle and/or its affiliates

April 2, 2022

Raw Numbers

benchmark Altra GraalVM EE 22.0 (JDK 17) M1 Pro GraalVM EE 22.0 (JDK 17)
akka-uct 6809 5415
* benchmark suite: renaissase 0.14 als 1919 1137
* values are execution time [ms] S— oe oo
* both executions are limited to 10 logical cores dotty 1161 455
. finagle-chirper 4098 6942
e M1 Pro has 10 logical cores finagle-http 1191 2647
* 8 high-performance & 2 efficiency fi-kmeans 2577 1367
future-genetic 2008 1567
gauss-mix 1010 611
log-regression 1140 560
mnemonics 2104 1096
movie-lens 11620 7219
naive-bayes 1336 621
page-rank 3441 2113
par-mnemonics 1936 949
philosophers 2135 1249
reactors 13195 6104
rx-scrabble 227 106
scala-doku 1508 1487
scala-kmeans 197 116
scala-stm-bench?7 1182 938
scrabble 124 59
geomean 1624 958

21 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Considering Perf/$

Prior comparisons are using equal core counts
Altra has 80 cores per node vs 18 (36 threads) for Intel

AArch64 machines are generally cheaper in the cloud
e 1 Altra vCPU = $0.01/hr vs 1 Ice Lake vCPU = $S0.027/hr (OCI Bare Metal Instance)

Takeaway: Today AArch64 has very high Perf/S

For more details: blog post

GraalVM Technology

GraalVM Enterprise accelerates Java
performance on Oracle Cloud Ampere A1

e Shaun Smith | May 25, 2021 | 4 minute read

22 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://www.oracle.com/cloud/compute/pricing.html
https://blogs.oracle.com/java/post/graalvm-enterprise-accelerates-java-performance-on-oracle-cloud-ampere-a1

Deep Dive: handling AMD64isms in Codebase

Main AArch64 differences from AMDG64:

1. Allinstructions are 32-bits long
. Limits # of immediates which can be encoded in instructions

2. AArch64 only requires a “relaxed” memory consistency model
. Allows instructions to execute differently than program order

23 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Dangerous AMDG64isms: PC relative branching & Patching

e AMDG64 PC-relative instructions can access + 2GB
* address displacement immediate is 4bytes

e AArch64 instructions cannot access + 2GB
* branches: + 128 MB
e Joads:+1 MB

* Workaround: use a sequence of instructions to reach + 4GB
* branches: adrp, add, br [reg]
* loads: adrp, Idr [reg + #imm]

24 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/ADRP--Form-PC-relative-address-to-4KB-page-?lang=en
https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/ADRP--Form-PC-relative-address-to-4KB-page-?lang=en

Dangerous AMDG64isms: PC relative branching & Patching

* Problem: AArch64 native image code was directly ported from AMD64
Didn’t consider access ranges

* Impact:
accidentally jump to wrong spot

e access wrong data
e overwrite instructions incorrectly

* Fix: Replace with correct adrp (add br|Idr) sequences
Add patching logic to correctly update this code at link time

Add guaranteed to code to ensure impossible patch fails at code generation time

25 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Dangerous AMD64isms: Memory Model Differences

« AMDG64 defines a TSO (total store order) memory model
* Load = Load, Load = Store, Store = Store must be in order
e Store # Load: load can execute before store

 AArch64 defines a relaxed memory model

e accesses to same address must be in order
e all other ordering requirements must be enforced special instructions

26 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Dangerous AMD64isms: Memory Model Differences

Generated Code AMDG64 Ordering Requirements AArch64 Ordering Requirements
load A C “happen after” C load A \ Ioe.ld A
write B requirement write B write B
load C ﬁ load C / load C
load D \ load D~ load D
load E load E ~/ load E
write F write F write F
loads C, D & E can happen in any No ordering requirements!
order relative to write B Memory accesses can happen
in any order

* Because of relaxed memory model, application races are more likely to cause problems on AArch64
* Applications which “work fine” on AMD64 (but are actually buggy) may not work on AArch64

27 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Reducing volatile overhead in AArch64 via acquire and release

AArch64 also has instructions with acquire & release semantics
In addition to fences/barriers for LOAD _LOAD, LOAD STORE, etc...

e acquire: enforces ordering requirement on all subsequent memory accesses
* memory instructions before acquire can still be reordered

acquire also must be ordered with all prior releases

* release: enforces ordering requirement on all prior memory accesses
* memory instructions after release can still be reordered
release also must be ordered with all subsequent acquires

|deal fit for implementing Java’s volatile accesses

28 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Oil & Vinegar: Fences & Acquire/Release

29

* Graal started to partially use Acquire/Release in 2019 for volatile accesses
 Github PR 1772: rework handling of volatile accesses on aarch64

* Problem: Fences & Acquire/Release don’t mix

store-release

‘ load

fence (LOAD_LOAD | LOAD_STORE)

volatile store

volatile load

e Early 2022, switched to using Acquire/Release for all volatile accesses on AArch64

Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://github.com/oracle/graal/pull/1772

Future Improvements

* Add support for SVE (Scalable Vector Extension)
e SVE is AArch64’s new vector instruction family

e Better Optimize AArch64 Memory Instructions
 |Improve address generation
* Further minimize need for fences

Other Miscellaneous:

 Tune Compiler Optimization Heuristics for AArch64
 G1GC for native-image EE

 |Improved debugging support

30 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Takeaways

e Linux AArch64 runs entire GraalVM ecosystem
e Darwin AArch64 support will soon follow

* Using Graal on AArch64 offers performance advantages over Hotspot’s C2
e Geomean 1.5x speedups on renaissance 0.11

* AArch64 is a high priority for GraalVM
* We are working to make it rival GraalVM on AMD64

31 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

.« 1//(7 N = ..
% S

///e%
M

X%

Thank you

