
GraalVM: State of AArch64

Tom Shull
Senior Researcher
Oracle Labs
April 2, 2022

About Me

• Joined GraalVM Team in June 2020
• Work in Zürich Office
• Previously worked at Arm Ltd. on Graal Support

• Lead AArch64 development for GraalVM Compiler and Native Image
• Also work on general-purpose Native Image improvements

2 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Talk Outline

• Quick Description of AArch64 ISA
• High-Level Overview of Graal’s AArch64 Support
• Demo: Setting up Development Environment
• Walkthrough: Navigating AArch64 Codebase
• Graal AArch64 Performance Numbers
• Getting rid of Graal’s AMD64isms
• Future Improvements

3 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

State of AArch64 Ecosystem
• Note: I am only talking about AArch64 (ARM64), Arm’s 64-bit instruction set
• NOT referring to AArch32, Arm’s 32-bit architecture (ARM/A32 & Thumb/T32)

4 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

AArch64
Announced

10/2011

Apple
iPhone 5s
10/2012

Android 5.0
Lollipop
11/2014

Intel discontinues
Atom on Mobile

04/2016

Timeline of Significant AArch64 Events

State of AArch64 Ecosystem
• Note: I am only talking about AArch64 (ARM64), Arm’s 64-bit instruction set
• NOT referring to AArch32, Arm’s 32-bit architecture (ARM/A32 & Thumb/T32)

5 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

AArch64
Announced

10/2011

Apple
iPhone 5s
10/2012

Android 5.0
Lollipop
11/2014

Intel discontinues
Atom on Mobile

04/2016

AWS
Graviton
11/2018

Apple
Silicon

Announced
06/2020

Nvidia
Grace CPU
Announced

3/2021

Timeline of Significant AArch64 Events

State of AArch64 Ecosystem
• Note: I am only talking about AArch64 (ARM64), Arm’s 64-bit instruction set
• NOT referring to AArch32, Arm’s 32-bit architecture (ARM/A32 & Thumb/T32)

6 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

AArch64
Announced

10/2011

Apple
iPhone 5s
10/2012

Android 5.0
Lollipop
11/2014

Intel discontinues
Atom on Mobile

04/2016

AWS
Graviton
11/2018

Apple
Silicon

Announced
06/2020

Nvidia
Grace CPU
Announced

3/2021

Oracle OCI
AArch64 Support

05/2021

Timeline of Significant AArch64 Events

AArch64 ISA Overview

• 64-bit architecture with floating point & vector support

• 31 general purpose registers
• Also has zero (zr) and stack pointer (sp) registers
• 32 floating-point / vector registers
• ASIMD (NEON) vector length is 128-bits

• All instructions are 32-bits (4-bytes) long
• Different from AMD64 (AMD64 is variable length)
• Impact: less space for immediate encodings in AArch64 instructions

7 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

GraalVM Ecosystem

8 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

High-performance optimizing
Just-in-Time (JIT) compiler

Ahead-of-Time (AOT) “Native
Image” generator

Multi-language support

GraalVM Ecosystem

9 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

High-performance optimizing
Just-in-Time (JIT) compiler

Ahead-of-Time (AOT) “Native
Image” generator

Multi-language support

Linux-AArch64: Entire Ecosystem Works!

GraalVM Ecosystem

10 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

High-performance optimizing
Just-in-Time (JIT) compiler

Ahead-of-Time (AOT) “Native
Image” generator

Multi-language support

Darwin-AArch64: Compiler & Native Image Work

Truffle support is still WIP
follow Github Issue 2666

https://github.com/oracle/graal/issues/2666

Building & Developing Graal on AArch64

Build process is same as AMD64:
1. Clone graal repo
2. Clone mx repo and add to PATH
3. Get of copy of jvmci-enabled openjdk and set as JAVA_HOME
• from labs-openjdk releases (labs 11) (labs 17)
• Alternative: use `mx fetch-jdk --to [download_dir]`

4. Use `mx [--env setup or --dy imports] build`

Developing:
• Intellij, Eclipse work on both Linux and MacOS
• use `mx ideinit` | `mx intellijinit` | `mx eclipseinit` to setup IDE project files

11 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://github.com/oracle/graal
https://github.com/graalvm/mx
https://github.com/graalvm/labs-openjdk-11/releases
https://github.com/graalvm/labs-openjdk-17/releases

Code Generation Process

12 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

ValueNodes • Graal Nodes in graph
• Conversion code mostly in LIRGenerator and LIRArithmeticGenerator

LIRInstructions • Calls MacroAssembler within 'emitCode’ methods

Machine
Instructions

• Emitted by MacroAssember and Assembler

Code Walkthrough References

• AddNode's generate
• AArch64ArithmeticLIRGenerator's emitAdd
• AArch64ArithmeticOp Add Enum
• Calling assembler add instruction
• Assembler Add instruction

13 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/calc/AddNode.java
https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.core.aarch64/src/org/graalvm/compiler/core/aarch64/AArch64ArithmeticLIRGenerator.java
https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.lir.aarch64/src/org/graalvm/compiler/lir/aarch64/AArch64ArithmeticOp.java
https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.lir.aarch64/src/org/graalvm/compiler/lir/aarch64/AArch64ArithmeticOp.java
https://github.com/oracle/graal/blob/14dc32697e58537c7bb759d51f812d481d6793f6/compiler/src/org.graalvm.compiler.asm.aarch64/src/org/graalvm/compiler/asm/aarch64/AArch64Assembler.java

Navigating AArch64 Codebase – Important Packages

Main AArch64 packages:

• org.graalvm.compiler.asm.aarch64: Calls for emitting AArch64 instructions
• org.graalvm.compiler.lir.aarch64: AArch64 LIRInstructions
• org.graalvm.compiler.core.aarch64: Logic for lowering Graal Nodes to LIRInstructions
• org.graalvm.compiler.hotspot.aarch64: HotSpot specific LIRInstruction generation hooks
• com.oracle.svm.core.graal.aarch64: Native Image specific LIRInstruction generation hooks

14 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Navigating AArch64 Codebase – Important Files

Emitting AArch64 Instructions

• AArch64Assembler
• AArch64MacroAssembler
• AArch64ASIMDAssembler
• AArch64ASIMDMacroAssembler

AArch64 LIR Instructions

• AArch64ArithmeticOp
• AArch64Move
• AArch64AtomicMove
• AArch64Call
• AArch64 Compare
• AArch64ControlFlow

Node → LIRInstruction Lowering

• AArch64LIRGenerator
• AArch64ArithmeticLIRGenerator
• AArch64HotSpotBackend
• AArch64HotSpotLIRGenerator
• SubstrateAArch64Backend

15 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Comparing AArch64 vs AMD64 Optimizations

• Optimizations: equivalent*
• Same passes run within HighTier, MidTier, and LowTier phases
• AArch64 (EE) also runs same Loop and Linear Vectorization passes
• AMD64 can (potentially) benefit more due to bigger vector widths

• *AMD64 has more peephole optimizations (via LoweringProviders)
• *Optimization heuristics are currently tuned for AMD64

• Intrinsics
• (Custom Nodes for efficient execution of select Java Methods)
• AArch64 is similar to AMD64
• See UnimplementedGraalIntrinsics
• Also compare AArch64GraphBuilderPlugins and AMD64GraphBuilderPlugins

16 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://github.com/oracle/graal/blob/3d209e855de7f1d7a892f2962dbccd2e94038c3a/compiler/src/org.graalvm.compiler.hotspot/src/org/graalvm/compiler/hotspot/meta/UnimplementedGraalIntrinsics.java

Performance Comparisons

• Two sets of comparisons:
• Intel Ice Lake vs Ampere Altra
• Ampere Altra vs Apple M1 Pro

17 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Company Intel Ampere Apple

Core Name Ice Lake Altra M1 Pro

Base Frequency 3 GHz 3 GHz ∼2-3 GHz

cores (threads) 18 (36) 80 (80) 10 (10)

Comparing Intel Ice Lake and Ampere Altra

Ice Lake: OracleJDK 11.0.11 Ice Lake: GraalVM EE 21.1 (JDK11) Altra: OracleJDK 11.0.11 Altra: GraalVM EE 21.1 (JDK 11)

Geomean 1665 ms 1023 ms 2201 ms 1466 ms

18 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Raw times [ms] running Renaissance 0.11 on 36 cores for Ice Lake and Altra

Ice Lake Altra

1.628x 1.501x

GraalVM 21.1 (JDK 11) Speedup over OracleJDK 11.0.11

Raw Numbers

Benchmark Ice Lake: OracleJDK 11.0.11 Ice Lake: GraalVM EE 21.1 (JDK11) Altra: OracleJDK 11.0.11 Altra: GraalVM EE 21.1 (JDK11)
akka-uct 9891 7903 14543 14815
als 2251 1257 3273 2290
chi-square 890 627 1237 754
dec-tree 1285 789 1639 1160
dotty 1849 1540 2216 1892
fj-kmeans 847 847 806 970
future-genetic 1611 1527 2262 1872
gauss-mix 851 517 1026 798
log-regression 1477 1424 1553 1511
mnemonics 4208 2020 4444 2567
movie-lens 5317 4271 27307 26107
naive-bayes 214 95 484 122
neo4j-analytics 6919 2185 4556 2766
page-rank 1125 984 1819 1801
par-mnemonics 3627 1611 4041 2171
philosophers 4693 4133 6426 5844
reactors 13636 10815 15792 15323
rx-scrabble 231 196 261 233
scala-doku 7593 2002 11050 3343
scala-kmeans 469 164 477 198
scala-stm-bench7 1077 934 1279 1262
scrabble 120 30 158 24
geomean 1665 1023 2201 1466

19 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

• benchmark suite: renaissase 0.11
• values are execution time [ms]
• both executions are limited to 36 logical cores

• Ice Lake has 36 logical cores, 18 physical cores (2-way SMT)

Comparing Altra and M1 Pro

Altra GraalVM EE 22.0 (JDK 17) M1 Pro GraalVM EE 22.0 (JDK 17)

Geomean 1624 ms 958 ms

20 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

M1 Pro Speedup over Altra 1.695x

Raw times [ms] running Renaissance 0.14 on 10 cores for Altra and M1 Pro

Raw Numbers

benchmark Altra GraalVM EE 22.0 (JDK 17) M1 Pro GraalVM EE 22.0 (JDK 17)
akka-uct 6809 5415
als 1919 1137
chi-square 522 269
dec-tree 825 479
dotty 1161 455
finagle-chirper 4098 6942
finagle-http 7191 2647
fj-kmeans 2577 1367
future-genetic 2008 1567
gauss-mix 1010 611
log-regression 1140 560
mnemonics 2104 1096
movie-lens 11620 7219
naive-bayes 1336 621
page-rank 3441 2113
par-mnemonics 1936 949
philosophers 2135 1249
reactors 13195 6104
rx-scrabble 227 106
scala-doku 1508 1487
scala-kmeans 197 116
scala-stm-bench7 1182 938
scrabble 124 59
geomean 1624 958

21 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

• benchmark suite: renaissase 0.14
• values are execution time [ms]
• both executions are limited to 10 logical cores

• M1 Pro has 10 logical cores
• 8 high-performance & 2 efficiency

Considering Perf/$

• Prior comparisons are using equal core counts
• Altra has 80 cores per node vs 18 (36 threads) for Intel
• AArch64 machines are generally cheaper in the cloud
• 1 Altra vCPU = $0.01/hr vs 1 Ice Lake vCPU = $0.027/hr (OCI Bare Metal Instance)
• Takeaway: Today AArch64 has very high Perf/$

For more details: blog post

22 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://www.oracle.com/cloud/compute/pricing.html
https://blogs.oracle.com/java/post/graalvm-enterprise-accelerates-java-performance-on-oracle-cloud-ampere-a1

Deep Dive: handling AMD64isms in Codebase

Main AArch64 differences from AMD64:
1. All instructions are 32-bits long
• Limits # of immediates which can be encoded in instructions

2. AArch64 only requires a “relaxed” memory consistency model
• Allows instructions to execute differently than program order

23 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Dangerous AMD64isms: PC relative branching & Patching
• AMD64 PC-relative instructions can access ± 2GB
• address displacement immediate is 4bytes

• AArch64 instructions cannot access ± 2GB
• branches: ± 128 MB
• loads: ± 1 MB

• Workaround: use a sequence of instructions to reach ± 4GB
• branches: adrp, add, br [reg]
• loads: adrp, ldr [reg + #imm]

24 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/ADRP--Form-PC-relative-address-to-4KB-page-?lang=en
https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/ADRP--Form-PC-relative-address-to-4KB-page-?lang=en

Dangerous AMD64isms: PC relative branching & Patching
• Problem: AArch64 native image code was directly ported from AMD64
• Didn’t consider access ranges

• Impact:
• accidentally jump to wrong spot
• access wrong data
• overwrite instructions incorrectly

• Fix: Replace with correct adrp (add br|ldr) sequences
• Add patching logic to correctly update this code at link time
• Add guaranteed to code to ensure impossible patch fails at code generation time

25 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Dangerous AMD64isms: Memory Model Differences

• AMD64 defines a TSO (total store order) memory model
• Load ⇒ Load, Load ⇒ Store, Store ⇒ Store must be in order
• Store ⇏ Load: load can execute before store

• AArch64 defines a relaxed memory model
• accesses to same address must be in order
• all other ordering requirements must be enforced special instructions

26 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Dangerous AMD64isms: Memory Model Differences

27 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

load A
write B
load C
load D
load E
write F

Generated Code

load A
write B
load C
load D
load E
write F

AMD64 Ordering Requirements

load A
write B
load C
load D
load E
write F

AArch64 Ordering Requirements

loads C, D & E can happen in any
order relative to write B

No ordering requirements!
Memory accesses can happen

in any order

• Because of relaxed memory model, application races are more likely to cause problems on AArch64
• Applications which “work fine” on AMD64 (but are actually buggy) may not work on AArch64

“happen after”
requirement

Reducing volatile overhead in AArch64 via acquire and release

• AArch64 also has instructions with acquire & release semantics
• In addition to fences/barriers for LOAD_LOAD, LOAD_STORE, etc...

• acquire: enforces ordering requirement on all subsequent memory accesses
• memory instructions before acquire can still be reordered
• acquire also must be ordered with all prior releases

• release: enforces ordering requirement on all prior memory accesses
• memory instructions after release can still be reordered
• release also must be ordered with all subsequent acquires

• Ideal fit for implementing Java’s volatile accesses

28 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Oil & Vinegar: Fences & Acquire/Release

• Graal started to partially use Acquire/Release in 2019 for volatile accesses
• Github PR 1772: rework handling of volatile accesses on aarch64
• Problem: Fences & Acquire/Release don’t mix

• Early 2022, switched to using Acquire/Release for all volatile accesses on AArch64

29 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

volatile store

volatile load

store-release

load
fence (LOAD_LOAD | LOAD_STORE)

https://github.com/oracle/graal/pull/1772

Future Improvements

• Add support for SVE (Scalable Vector Extension)
• SVE is AArch64’s new vector instruction family

• Better Optimize AArch64 Memory Instructions
• Improve address generation
• Further minimize need for fences

Other Miscellaneous:
• Tune Compiler Optimization Heuristics for AArch64
• G1GC for native-image EE
• Improved debugging support

30 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Takeaways

• Linux AArch64 runs entire GraalVM ecosystem
• Darwin AArch64 support will soon follow

• Using Graal on AArch64 offers performance advantages over Hotspot’s C2
• Geomean 1.5x speedups on renaissance 0.11

• AArch64 is a high priority for GraalVM
• We are working to make it rival GraalVM on AMD64

31 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

Thank you

32 Copyright © 2022, Oracle and/or its affiliates April 2, 2022

