
“Static Java”: The Programming Model of
GraalVM Native Image

Christian Wimmer

Architect, GraalVM Native Image

christian.wimmer@oracle.com

Christian Wimmer

5+ years working on Java HotSpot VM

• SSA form and register allocation for the client compiler

• Research of object layout optimizations

3 years “detour” into language based security

10+ years working on GraalVM

• Native Image architect, from first commit to production

Copyright © 2022, Oracle and/or its affiliates2

High-performance optimizing
Just-in-Time (JIT) compiler

Ahead-of-Time (AOT) “Native
Image” generator

Multi-language support

What is GraalVM?

3 Copyright © 2022, Oracle and/or its affiliates

1. Introduce and explain the programming model of GraalVM Native Image

2. Convince you that this is a worthwhile programming model for Java

3. Show where the closed-world assumption helps and where it hurts

Goals of this talk

Copyright © 2022, Oracle and/or its affiliates4

• Cloud and microservices change how
software is written

• New languages like Go

• New ecosystems like NodeJS

• Java can be better than Go for application
startup and memory footprint

• Java can have a better programming
model than Go and NodeJS

Keeping Java vibrant

Copyright © 2022, Oracle and/or its affiliates5

What is GraalVM Native Image

Copyright © 2022, Oracle and/or its affiliates6

No, AOT compilation is an implementation detail

• An ahead-of-time (AOT) compiler for Java
“gcc for Java”

• A snapshotting tool for Java
“CRIU for Java”

Yes, but with an explicit control of snapshot building

• A new programming model for Java:
“Application initialization at build time”

Paper with details, examples, benchmarks

7

https://doi.org/10.1145/3360610

https://doi.org/10.1145/3360610

Native image generation

Copyright © 2022, Oracle and/or its affiliates8

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

• The points-to analysis needs to see all bytecode

• Otherwise aggressive AOT optimizations are not possible

• Otherwise unused classes, methods, and fields cannot be removed

• Otherwise a class loader / bytecode interpreter is necessary at run time

• Dynamic parts of Java require configuration at build time

• Reflection, JNI, Proxy, resources, ...

• No loading of new classes at run time

Closed-world assumption

Copyright © 2022, Oracle and/or its affiliates9

• Execution at run time starts with an initial heap: the “image heap”

• Objects are allocated in the Java VM that runs the image generator

• Heap snapshotting gathers all objects that are reachable at run time

• Do things once at build time instead at every application startup

• Class initializers, initializers for static and static final fields

• Explicit code that is part of a so-called “Feature”

• Examples for objects in the image heap

• java.lang.Class objects

• Enum constants

Image heap

Copyright © 2022, Oracle and/or its affiliates10

Benefits of the image heap

Copyright © 2022, Oracle and/or its affiliates11

Without GraalVM
Native Image

Build time

Run time

GraalVM Native Image
(default)

Build time

Run time

GraalVM Native Image:
Load configuration file

at build time

Build time

Run time

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Nice theory, but does it work in practice?

Copyright © 2022, Oracle and/or its affiliates12

Several AOT compilers for Java exist or existed

• jaotc (part of OpenJDK, using the GraalVM compiler)

• gcj

• Excelsior JET

But Java code is hard to optimize without data

• Java code is very object oriented

• AOT compilation only covers the “code” aspect of objects and ignores the “data” aspect

• Simple example: You cannot optimize Java enum usages without having the actual enum instances

• To get to data (Java objects), you need to run parts of your application

Why not “just AOT compilation”?

Copyright © 2022, Oracle and/or its affiliates13

Many terms can and have been used for this programming model:

• Snapshotting (but focuses too much on the “data” aspect)

• Staging (too generic term)

• Phase awareness (too generic term)

• Partial evaluation (already used by Truffle language framework in GraalVM)

• Hosted execution (used by meta-circular VMs such as the Maxine VM)

• Image generation

For GraalVM Native Image, we mostly use “image generation” (and sometimes “hosted execution”)

• Consistent with the jlink terminology of a “custom runtime image”

Terminology

Copyright © 2022, Oracle and/or its affiliates14

Parts of GraalVM Native Image that are necessary for the programming model:

• Closed-world assumption: if you do not know your entire application, you cannot aggressively
optimize

• Static analysis: computes reachable classes, methods, and fields based on closed-world assumption

• Heap snapshotting: the “data” part of OOP

• Running application code at image build time

• Implicitly when initializing classes at image build time

• Explicitly based on triggers from the static analysis (better and more controllable than class
initializer)

Implementation details

• AOT compilation: interpretation and JIT compilation work as well

• Points-to analysis: the actual kind of static analysis does not matter (can be a simpler analysis)

• A runtime system written in Java (“Substrate VM”)

• Building a single self-contained executable

Programming model vs. implementation detail

Copyright © 2022, Oracle and/or its affiliates15

A lot of implementation details are due to the original use case: Oracle Database Multilingual Engine (MLE)

• Integration of the GraalVM language framework (Truffle) into the Oracle database

MLE allowed many simplifying assumptions:

• All code apart from the JDK is developed by same team and can adapt to restrictions

• One production OS: the OS abstraction layer of the database

• Linux and MacOS support for development

• Only basic file system and network support is necessary.

• No Java reflection or JNI support is needed

• Fast initialization of a database session and low memory footprint are essential

Result: a quite restrictive but very well performing system

Many other uses cases profit from fast startup and low memory footprint

• Microservices, command line applications

But “real-world code” does not follow the initial restrictions

• How far can we go and lift restrictions without sacrificing the main benefits?

• What other applications can profit from the new programming model (application initialization at build time)?

Detour: history of GraalVM Native Image

Copyright © 2022, Oracle and/or its affiliates16

Pushing the boundaries

Copyright © 2022, Oracle and/or its affiliates17

Full application
stacks written with
closed-world
assumption

New microservice
frameworks, written
with closed-world
mindset

Frameworks
suitable for
closed-world

Frameworks not
suitable for
closed-world
assumption

Truffle language
implementations,
MLE,
small command line
tools

Micronaut Spring Boot WebLogic,
JBoss

Quarkus,
Helidon

“Class initialization at build time” and “application initialization at build time” are equivalent

• If you want to initialize your application at build time, you can write a class initializer for this and
mark the class as “initialize at build time”

• Initializing the application at build time requires initialization of some application classes

Java class initialization is tricky

• Some reasons for class initialization are not obvious

• Example: adding a default method in an interface changes class initialization behavior

• Class initialization order is non-deterministic when class dependencies are cyclic

• A static analysis cannot determine the order in which class initialization happens at run time

An explicit API for application initialization is better than relying on side effects of class initialization

• And in addition the explicit API provides access to static analysis results

• Especially useful for frameworks: “if XYZ is used by the application, also include/initialize ABC”

Class initialization vs. application initialization

Copyright © 2022, Oracle and/or its affiliates18

Static analysis API exposed to application

Copyright © 2022, Oracle and/or its affiliates19

Active API: register callbacks for analysis status changes

/* Invoke callback when one of the provided elements (can be Class, Field, or Executable) gets reachable. */
void registerReachabilityHandler(Consumer<DuringAnalysisAccess> callback, Object... elements);

/* Invoke callback when a new subtype of the provided type gets reachable. */
void registerSubtypeReachabilityHandler(BiConsumer<DuringAnalysisAccess, Class<?>> callback, Class<?> baseClass);

/* Invoke callback when a new override of the provided method gets reachable. */
void registerMethodOverrideReachabilityHandler(BiConsumer<DuringAnalysisAccess, Executable> callback, Executable baseMethod);

Passive API: query current analysis status

boolean isReachable(Class<?> clazz);
boolean isReachable(Field field);
boolean isReachable(Executable method);

Set<Class<?>> getReachableSubtypes(Class<?> baseClass);
Set<Executable> getReachableMethodOverrides(Executable baseMethod);

Participate in heap snapshotting: transform entire object or transform individual field value before it is added to image heap

void registerObjectTransformer(Function<Object, Object> transformer); // actually called registerObjectReplacer right now
void registerFieldValueTransformer(Field field, Function transformer); // actually done via @Alias and @RecomputeFieldValue

• Micronaut annotation processor generates metadata holder classes to avoid reflection at run time

• Class initializer initializes large data structure used by runtime lookup

• Such initialization code can run at image build time

• Framework can guarantee that code is safe for build-time execution

Example: Micronaut metadata

Copyright © 2022, Oracle and/or its affiliates20

23.1

12.0

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

[MByte]

Number of JavaScript instances

V8 JavaScript VM

RSS PSS USS

• Written entirely in Java, but better startup time and memory footprint than V8

• Context pre-initialization

• At image build time, all data structures for a JavaScript execution context are built

• At run time, only a bit of patching and configuration is necessary

Example: GraalVM JavaScript engine

Copyright © 2022, Oracle and/or its affiliates21

19.0

0.5

1 2 3 4 5 6 7 8 9 10 11 12

GraalVM

Example: horizontal scaling of microservices

Copyright © 2022, Oracle and/or its affiliates22

Java HotSpot VM

• 4 VM instances = 4 times the memory

Native Image

• 4 VM instances = 2 times the memory

• Image heap shared between processes

• Machine code shared between processes

Memory Usage in MByte
Quarkus Apache Tika ODT in a “tiny” configuration and with the serial GC
(1 CPU core per process, -Xms32m -Xmx128m) – JDK 11

59 83 108 132

310

576

843

1109

0

200

400

600

800

1000

1200

1 process 2 processes 3 processes 4 processes

Native Image EE HotSpot C2

The good
• It works to find a reasonably small closed world for real-world applications

• Tightly integrating static analysis with the compiler allows re-use optimization phases before static analysis

The bad
• Precision is not great regarding types that can reach a variable or field

• Attempts to use context-sensitivity have so far not been useful
• Any useful improvement of precision requires a very deep context

• Java has deep call chains and deep object structures. For example, just look at java.util.HashMap
• Java arrays have no type information: every array can be cast to Object[]

The ugly
• Reflection, JNI, Unsafe, … need configuration at image build time

• We see over-registration of methods to make configuration easier
• Reflection passes arguments in Object[] array

• About every JDK method can call String.format which has huge reachability
• Solution: avoid reflection, see for example the new reflection-free JSON framework from Micronaut

Static analysis: the good, the bad, and the ugly

Copyright © 2022, Oracle and/or its affiliates23

Closed-world has security benefits

• Implicit fix for Object deserialization vulnerabilities

• “Software bill of material” (SBOM): audit all code that can possibly execute

• Check for vulnerable library versions, disallowed crypto algorithms, …

• No need to rely on SecurityManager for “untrusted” code

Snapshotting can lead to security problems

• Leaking of build-time information into the executable

• Username, working directory, passwords, IP address, server name, …

• The native image generator has some checks in place, but it cannot provide guarantees

• Application code runs at image build time

• Malicious code can take over the build infrastructure

• JDK / library security updates (like quarterly CPU releases) require rebuild of images

Benefits of a closed world: security

Copyright © 2022, Oracle and/or its affiliates24

No “deoptimization”

• No performance cliff when reverting from highly optimized to unoptimized code

• Fast and predictable performance already for the first request

Indirect method calls are simple and always constant time

• invokevirtual and invokeinterface are always vtable calls with fixed vtable index

Dynamic type checks are simple and always constant time

Larger code transformations at build time without worrying about deoptimization (= interpreter state)

• Outlining of allocations

• String concatenation: replace StringBuilder with pre-sized concatenation methods

• Optimization of String.format(): pre-parsing of format strings

• String inlining: combine the String object and the byte[] array to a single hybrid object

Benefits of a closed-world AOT compilation: predictable performance

Copyright © 2022, Oracle and/or its affiliates25

• Type checks can be seen as a binary matrix of types

• “1” === “assignable”

• A binary matrix has the Consecutive Ones Property (C1P) when there is a
permutation of its rows that leaves the 1's consecutive in every column.

• “Consecutive Ones” === “Range Check”

• Precompute the minimum number of sub-matrices that all fulfill C1P

• Number of matrices === number of type-check slots in each type

• Every type has a typeID for each slot

The actual snippet for the lowering of all type checks:

• 1 memory read when type is a compile-time constant (instanceof bytecode)

• 4 memory reads when type is not a compile-time constant (Class.isInstance,
Class.isAssignableFrom)

Example: type checks

Copyright © 2022, Oracle and/or its affiliates26

Object

A

B

X

Y

I

O A B X Y I

O 1 1 1 1 1 1

A 0 1 1 0 0 0

B 0 0 1 0 0 0

X 0 0 0 1 1 0

Y 0 0 0 0 1 0

I 0 0 1 0 1 1

O A B X Y I

O 1 1 1 1 1 1

A 0 1 1 0 0 0

B 0 0 1 0 0 0

X 0 0 0 1 1 0

Y 0 0 0 0 1 0

O A B Y I X

I 0 0 1 1 1 0

Slot 1:

Slot 0:

short typeCheckStart = type.typeCheckStart;
short typeCheckRange = type.typeCheckRange;
short typeCheckSlot = type.typeCheckSlot;
short checkedTypeID = checkedType.typeIDs[typeCheckSlot];
return checkedTypeID – typeCheckStart < typeCheckRange;

Exception allocations

• Smaller code

• Performance neutral

String concatenation

• Smaller code

• Better performance

• No copying of data array

• No incremental array size increases

• Like invokedynamic-based string concatenation

Example: allocation outlining, StringBuilder optimization

Copyright © 2022, Oracle and/or its affiliates27

public static <T> T requireNonNull(T obj) {
if (obj == null)
throw new NullPointerException();

return obj;
}

public static <T> T requireNonNull(T obj) {
if (obj == null)
throw createAndThrowNullPointerException();

return obj;
}

// Shared by all places that throw a NullPointerException
NeverReturningMethod createAndThrowNullPointerException() {
throw new NullPointerException();

}

Object object = …
int number = …
String s = "literal" + object + number;

String objectStr = String.valueOf(object);
String s = concat_S_S_I("literal", objectStr, number)

// Shared by all places that concatenate the same types
String concat_S_S_I(String s1, String s2, int i3) {
int len = s1.length + s2.length + intLen(i3);
byte[] data = new byte[len];
int pos = 0;
pos = copy(data, pos, s1);
pos = copy(data, pos, s2);
pos = copy(data, pos, i3);
return new String(data, false); // non-copying constructor

}

Combine the java.lang.String object and the byte[] array

• Reduce memory footprint

• Improve cache behavior

Single “hybrid” object that has fields from String, and array parts

• Loading the field String.value is a no-op

• Access of array elements use larger array base offset

Real-world complications

• Access of String.value via reflection: disable optimization at
image build time

• Access of String.value via JNI (yes, of course the JDK C code
is doing that): change the JNI functions for array access

Example: String inlining

Copyright © 2022, Oracle and/or its affiliates28

hub: String

identity hash code

hash

coder

hashIsZero

(padding)

4

8

12

16

17

value

18

24

hub: byte[]

identity hash code

data[0]

data[1]

…

4

8

12

13

14

length

hub: String

identity hash code

hash

coder

hashIsZero

4

8

12

16

17

18

19
data[0]

data[1]

…
20

length

String with 6 ASCII characters: 48 byte
String object: 24 byte
byte[] array: 24 byte

Inlined string with 6 ASCII
characters: 24 byte

Precise exception semantics

• Java specification requires exact exception class at the exact place

• Cannot hoist null checks / bounds checks out of loops

• Speculative guard movement phase used for JIT compilation does no work

• Solution: loop duplication phase, explicit loop invariant code motion phase

Must compile for lowest common denominator of CPU features

• Intel: SSE2 (maybe AVX2 soon)

• Solution: loop duplication phase, method duplication

Size of the AOT compiled code

• Especially with aggressive method inlining, code size can explode

• Solution: profile-guided optimizations to compile hot code for performance, cold code for size

No profile information from current execution

• Profile-guided optimization with either instrumentation-based or sampling-based profiling

• Applying profiles requires re-build of native image

Challenges of a closed-world AOT compilation

Copyright © 2022, Oracle and/or its affiliates29

Basic idea: “extend” the image heap at run time

Example: persist configuration for fast application startup

• Keeping an app continuously provisioned just for occasional short queries wastes resources

• Native Image loads code fast – but what about data?

• The image heap cannot be updated without a rebuild — minutes of compute

Example: persist long-lived and slowly evolving caches

• Persist cache on shutdown of application

Need to be able to load pre-populated parts of the heap quickly and efficiently

• Deserialization is much too slow and inefficient

• Small updates also necessitate fast, incremental saves

• Copy-on-write sharing like image heap

Persistent heaps

Copyright © 2022, Oracle and/or its affiliates30

Example: creating a persistent heap

Copyright © 2022, Oracle and/or its affiliates31

Image heap

1 2

3

4

Root for persistent heap

75

6
8

New process with just image heap

Image heap

1 2

3

4

Run-time heap

75

6
8

10

9

Execution modifies image heap and run time heap Persisted heap

Example: loading a persistent heap

Copyright © 2022, Oracle and/or its affiliates32

Image heap

1 2

3

4

Persistent heap

75

6
8

Image heap

1 2

3

4

Persistent heap

75

6
8

Run-time heap

21

20
21

New process with loaded persistent heap

Execution modifies image heap, snapshot heap, and run-time heap

Reference from snapshot to image heap (5 to 4) is preserved

Reference from image to snapshot heap (3 to 6) is NOT preserved

When do you load your microservice configuration?

Copyright © 2022, Oracle and/or its affiliates33

public static void main(String[] args) {
Configuration config = Configuration.loadFromFile();
System.out.println(config.handler.handle());

}

class ConfigureAtBuildTimeFeature implements Feature {
public void beforeAnalysis(BeforeAnalysisAccess access) {
// This code runs at image build time
ImageSingletons.add(Configuration.class, Configuration.loadFromFile());

}
}

public static void main(String[] args) {
Configuration config = ImageSingletons.lookup(Configuration.class);
System.out.println(config.handler.handle());

}

public static void main(String[] args) {
File heapFile = ...
if (!heapFile.exists()) {
config = Configuration.loadFromFile();
persistHeap(config, heapFile);

} else {
Heap heap = Heap.map(heapFile);
config = heap.lookup(Configuration.class);

}
System.out.println(config.handler.handle());

}

Load configuration at run time

Load configuration at image build time

Load at run time and cache in persistent heap

11.4 million instructions

1.0 million instructions

First run (load file and persistent heap): 23 million
instructions

All other runs (load persistent heap):
1.1 million instructions

Instruction counts are for parsing a 1-line JSON file using
Jackson, to build a configuration that prints “Hello, World”

This is the same instruction count as printing “Hello, World”
directly without any configuration.

Introduce and explain the programming model of GraalVM Native Image

• Application initialization at build time is a new programming model for Java where applications have
explicit control over snapshot building and static analysis

• Ahead-of-time compilation is not part of the programming model, only an implementation detail

Convince you that this is a worthwhile programming model for Java

• The GraalVM language implementations are a large-scale case study showcasing this model

• Microservice frameworks like Micronaut and Quarkus are using it already

Show where the closed-world assumption helps and where it hurts

• Predictable performance

• Good peak performance with profile-guided optimizations

• Image size is a big concern

Summary

Copyright © 2022, Oracle and/or its affiliates34

Thank you

https://www.graalvm.org

Copyright © 2022, Oracle and/or its affiliates35

