
Performance Understanding Tools for GraalVM
using the extended Berkley Packet Filter (eBPF)

Andy Nisbet, Salim Salim, Swapnil Gaikwad, Mikel Luján
Andy.Nisbet@manchester.ac.uk

CGO GraalVM Workshop,

27th February 2021

https://github.com/beehive-lab

mailto:Andy.Nisbet@manchester.ac.uk

Operating System

GraalVM

Truffle API

Sulong
(LLVM)

Objective – Understanding the full
stack for fair comparisons

Processor Micro-architecture

Fu
ll

St
ac

k

 Where is time spent?
 How well is the underlying micro-architecture being used (performance counters)?

— What are the reasons (bottlenecks) for poor utilization?
— Investigate dynamic execution behaviour/program phases?

Native Code

Analyse/process logged
observations to generate metrics
and/or visualizations to aid the

detection of issues

Observations of “data sources”
are generated from application

execution

Data sources
“things we can measure, sample

or instrument”

Process of Performance Analysis

Many different online/offline
visualizations & analysis tools

Outline

• Flamegraph Profile Visualizations – where is time spent?

• Sampling Profiler Shortcomings (JVM versus OS-perf)

• Truffle-based Language Performance (visualizing guest methods)

• Fullstack Tracing Instrumentation via (OS-eBPF)
− Deoptimization case study

• Full-stack (micro-architecture) Performance analysis
 Novel bcc-java tool for (full-stack) analysis

• Conclusions /discussion / acknowledgments

4

Simplified Flamegraph Example

5

void evaluate() { /* something expensive */ }
void initialise() { /* initialise data */ }
void compute() { evaluate(); }
void output() { /* output results */ }

int main()
{
 initialise(); // 20% of the time
 compute(); // 60% of the time
 output(); // 20% of the time
 return 0;
}

Example: CPU Sampling Profiling

6

Time

Recorded Samples

main;initialise 2
main;compute;evaluate 6
main;output 2

initialise() evaluate() output()

Sampling
Interval/Frequency

Example: Flamegraph

7

Recorded Samples

main;initialise 2
main;compute;evaluate 6
main;output 2

20%60% 20%

CPU Profiling Flamegraph (perf)

8

Java (JIT-ed) Inlined Java Kernel Mode Other/RestC++ Searched

999Hz, 200s perf generated flamegraph on a 4 core laptop akka-uct from the Rennaisance benchmarks suite GraalVMCE21.1.0-dev

Main Findings on Profiling

• Production sampling rates f: 99Hz ≤ f ≤ 999Hz

• CPU Flamegraphs are just one visualization:
— Intermittent performance issues can be hidden in narrow columns

 ICPE19 Nisbet et al, https://doi.org/10.1145/3297663.3309677

9

OS stack capture (perf) JVM stack capture

Interpreter methods appear only
as (Interpreter)

Incomplete code coverage of
intrinsics/stubs & no view of OS

Full code coverage, but need to
dump JIT-ted code addresses

May suffer from safepoint bias
Identify wrong hot-methods

Hybrid profilers (higher overheads), no sampling bias, both
Interpreted methods and OS are seen, but some incomplete code
coverage issues remain

https://doi.org/10.1145/3297663.3309677

Outline

 Flamegraph Profile Visualizations – where is time spent?
 Sampling Profiler Shortcomings (JVM versus OS-perf)
 Truffle-based Language Performance (visualizing guest methods)
 Tracing Instrumentation via (OS-eBPF)

 Deoptimization case study
 Full-stack (micro-architecture) Performance analysis

 Novel tool for comparing/evaluating performance (full-stack)
 Conclusions & Future Work

10

Sulong GraalVM based Execution

11

LLVM
IR

clang
Sulong

Truffle
API

JIT Compiled
methods

Interpreted
methods

JVM

Truffle
AST

CallTarget

C

void nbody(…){
…
}
…

bench.c bench.bc

define void @nbody(…){
…
}

…

Performance Comparison for Truffle-
based languages

12

Shootout: Computer Language Benchmarks Game
Why is Truffle Language A is faster than B on a benchmark?

ManLang18: Gaikwad, Nisbet, Luján: https://dl.acm.org/doi/10.1145/3237009.3237019

Problem: LLVM IR Function name is
Invisible in flamegraph

13

• Profile of Sulong nbody (shootout benchmark suite)

• It has a single source method – @nbody not seen

• callRoots represent a guest language compiled method

• Need a mechanism to relate callRoots to guest methods

Width of the frame is proportional to the time spent in the associated function

Hot Compiled Method from Truffle API (callRoot) – in general LLVM IR function name is invisible!

Truffle Profiling: Making Truffle guest
language methods visible in flamegraphs

14

• Manlang18 modified Graal JIT – log information to resolve different
callRoot code addresses to guest language source code

— Flamegraph colors can be used to highlight different guest languages in a
polyglot application

Actual LLVM IR function name

Outline

 Flamegraph Profile Visualizations – where is time spent?
 Sampling Profiler Shortcomings (JVM versus OS-perf)
 Truffle-based Language Performance (instrumenting guest

methods)
 Fullstack Tracing Instrumentation (OS-eBPF)

 Deoptimization case study
 Full-stack (micro-architecture) Performance analysis

 Novel tool for comparing/evaluating performance (full-stack)
 Conclusions & Future Work

15

Towards Fullstack Tracing
Instrumentation

16

Operating System

GraalVM

Truffle API

Sulong
(LLVM)

Processor Micro-architecture

Fu
ll

St
ac

k

Native Code

Towards Fullstack Tracing
Instrumentation

• eBPF insert/attach
instrumentation to user and
OS-kernel code tracepoints
& probes

• Measure – rather than
sample

• Selectively
capture/sample
information at points of
interest

• Can also instrument any
known address or text
symbol (probe)

17

Operating System 2653

GraalVM libjvm.so 521 “hotspot”

Math library libm 9

Performance counters measure
behaviour on Micro-architecture

Fu
lls

ta
ck

 t
ra

ce
p

o
in

ts

pthread library 25

Standard C library 25

Dynamic linker library 12

Deoptimization: Use-case for eBPF Tracing

• Speculative optimization leads to deoptimization if assumptions are violated

• Which GraalVM methods do we need to trace? (instrument function entry/exit)

• Capture information using eBPF instrumentation

– Selectively take a call-stack to find out what triggered deoptimization

– Measure performance counters TLB/L3/cache-misses with instrumentation

– Oracle optimization guide suggests examining GraalIR for insights

Deoptimization must
transform stack
layout & leads to
execution of less
optimized code

Latency

Slower
code is

executed

Count GraalVM deoptimizations - funccount

23TimeTime

Count the executions of all Deoptimization related methods – print out every 5s
funccount libjvm.so:*Deopt* -i 5

High frequency

Determining deoptimization latency in
GraalVM (libjvm.so) funclatency

20

Collect histograms of latency for a specific Deoptimization related method
funclatency -t -U -u 5 libjvm.so:_ZN14Deoptimization17last_frame_adjustEii

Long latency

Call-stack context for long Deoptimizations in
GraalVM (libjvm.so) funcslower

23TimeTime

Timestamp collect user call-stacks greater than 5 micro-second latency
Deoptimization::last_frame_adjust(int, int)

funcslower -t -U -u 5 libjvm.so:_ZN14Deoptimization17last_frame_adjustEii

Understanding Full Stack Execution
Behaviour with Top-down Analysis

• Performance counter metrics – give reasons for code execution efficiency (IPC)
• Structured methodology is needed to understand out-of-order execution in modern
Intel/ARM processors

• Many instructions are typically in-flight awaiting resources/results to become available
• Inefficiences at front end, back end, and due to incorrect speculations

Image snipped from wikipedia

Understanding Full Stack Execution
Behaviour with Top-down Analysis

• Top-down – structured way to analyze performance

• Use different sets of performance counters to identify issues

• Metrics – classify the percentage of cycles limited by a microarchitectural issue

• Maximise useful work by increasing the Retiring percentage

Understanding Full Stack Execution
Behaviour with Top-down Analysis

• C benchmarks compiled to LLVMIR and also to WebAssembly

• Different top-down behaviour exhibited by the same benchmark
executed using different Truffle languages

• Aggregated information only hints at different behaviour

Outline

 Flamegraph Profile Visualizations – where is time spent?
 Sampling Profiler Shortcomings (JVM versus OS-perf)
 Truffle-based Language Performance (visualizing guest methods)
 Tracing Instrumentation via (OS-eBPF)

 Deoptimization case study

Full-stack (micro-architecture) Performance analysis
● bcc-java our novel tool for comparing/evaluating performance

(full-stack)
 Conclusions & Future Work

10

Fullstack concept with bcc-java

25

 Top-down tracing of every thread execution time-slice on a CPU
 Less than 5% overhead
 Dynamic per-thread top-down execution behaviour is exposed
 Retiring Indicates how well the microarchitecture is utilised

Retiring
BadSpeculation
BackEnd
FrontEnd

Pe
rc

e
n

ta
ge

 o
f

cy
cl

e
s

Changes in effective utilisation

Fullstack concept with bcc-java

26

Instrumented events:timestamp, event, core, optional call-stack

 Insights/correlations can be drawn concerning changes to top-down behaviour

Retiring
BadSpeculation
BackEnd
FrontEnd

Improvement in
retiring

Degradation
in retiring

No significant
changes in
retiring

Time

Pe
rc

e
n

ta
ge

 o
f

cy
cl

e
s

Conclusions

23

• Better tooling is needed to make it easier to instrument GraalVM/JVMs using perf/eBPF
— For example improved support to identify/instrument JIT-ted code addresses

• Even standard eBPF tools can extract useful information - instrumenting libjvm.so
— funccount/funclatency/funcslower

• Flamegraphs can visualise where time is spent, at reasonably low overhead
— Needle in a haystack: performance issues can be obscured!

• Fullstack tracing, performance counters, and selective call-stack capture can act like a magnifying
glass for performance analysis

• Novel aspects of our bcc-java tool – dynamic thread level behaviour is overlayed with event traces

Discussion Questions

28

• Does the community have any important performance problems/use-cases
they can share?

— Information on what GraalVM code/events to trace for a given use-case
such as Deoptimization?

— How to implement tooling to selectively dump the GraalIR for a
compilation unit?

— How to identify performance impact of deoptimizations? Can we identify
the impact of executing less optimized code?

• Recommendations for performance optimization/GraalVM internals
tutorial examples/information sources?

Acknowledgements

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

