
GraalVM at Facebook

Chen Li
2021 Graal Workshop



About me...

● Software Engineer at Facebook (Programming 
Languages & Runtimes Team)

● Focus on Java Efficiency
● Previously at LinkedIn and Azul Systems



Agenda

● Java at Facebook
● Why GraalVM
● Spark on GraalVM
● GraalVM Bugs
● Future Plan



Facebook

1.84 Billion DAU
2.80 Billion MAU

Source: Facebook Q4 2020 earnings call



Where is Java used?

● Big Data Services
- Spark, Presto, etc.

● Backend Services
● Mobile: Android



Where is Java used?

● Big Data Services
- Spark, Presto, etc.

● Backend Services
● Mobile: Android



Facebook’s JDK 

● Oracle Hotspot & OpenJDK for Java 8
● OpenJDK for Java 11
● No customization



Why Graal?

● Performance
- Better optimizations i.e. escape analysis
- YoY improvements 

● Easier to learn Graal than C2
● Community



How we use Graal?

● GraalVM CE
● We use Graal as a JIT compiler to replace C2:



Spark at Facebook 

● Largest SQL query engine at Facebook
● Run on disaggregated compute/storage clusters
● Efficiency is high priority



Spark on GraalVM 

● Evaluated in early 2020
● Started with local benchmarks and small test suites
● Rolled out to production in a couple of months
● No reliability issues except for one compiler bug



Spark on GraalVM 

A couple of months



Which optimization matters?

● Polymorphic inlining
● Escape analysis
● Speculative optimizations



Polymorphic Inlining

TextConverter

LongConverter

DoubleConverter



Escape Analysis

● Reduce object allocations
● Avoid boxing/unboxing
● 5X less CPU consumption of java/lang/Double.valueOf 

in profiling results



Speculative Optimizations

Long if-else 
chains



Not as good

● JVMCI overhead
● Missing intrinsics

i.e. Arrays.fill
● Inlining not always beats C2
● No auto vectorization in CE



What else did we try?

● Auto-tune compiler flags using Ax
● Spark code generation using Truffle framework



Auto-tune compiler flags using Ax

● What is Ax?
Ax is a machine learning system that can optimize discrete 
configurations using multi-armed bandit optimization, and 
continuous configurations using Bayesian optimization.
https://ax.dev/

● What flags did we tune?
TrivialInliningSize, MaximumInliningSize, etc.



Auto-tune compiler flags using Ax



Auto-tune compiler flags using Ax
● Experiments show that it has potential to improve 

CPU performance for Spark workload, with over 10% 
on specific settings. 

● Need to address some issues before moving to 
production
- make tuning faster
- reduce noise in performance measurement



Spark code generation using Truffle 

● Use Truffle to write some SQL operators in Spark
● Early experiment: only a few operators were 

prototyped and no plan for production yet



Spark code generation using Truffle 

We had some 
discussion with 
people doing 
similar projects



Bugs

● #2493 GraalVM generates wrong result due to 
speculative optimization

● #2869 GraalVM: JVMCI-native CompilerThreads are 
RUNNABLE but not get processed



Bug #2493

● https://github.com/oracle/graal/issues/2493
● Graal does not handle signed comparison and 

unsigned comparison correctly when checking for 
disjoint conditions, which results in wrong 
If-statement reordering.



Bug #2493



Bug #2493



Bug #2493



Bug #2493



Bug #2493



Bug #2869

● https://github.com/oracle/graal/issues/2869
● JVMCI-native CompilerThreads halted and no new 

methods were compiled
● Can not reproduce locally
● Workaround: disable libgraal



Bug #2869



Now and in the future

● Most CPU-bound big data services on GraalVM
- Presto has > 5% CPU improvement and GC pause 
reduction switching to GraalVM

● Pushing for memory-bound services
- Shenandoah GC, ZGC support

● Leveraging other features like native image
● Adding customized optimization passes for Facebook 

workloads



Community contribution

● Open to contribute patches to open source
● Open to ideas/collaborations to make community 

better



Thank you!


