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About me...

e Software Engineer at Facebook (Programming
Languages & Runtimes Team)

e Focus on Java Efficiency

e Previously at Linkedln and Azul Systems



Agenda

Java at Facebook
Why GraalVM
Spark on GraalVM
GraalVM Bugs
Future Plan



Facebook

~1(0

1.84 Billion DAU
2.80 Billion MAU

Source: Facebook Q4 2020 earnings call



Where is Java used?

e Big Data Services

- Spark, Presto, etc.
e Backend Services
e Mobile: Android
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Facebook’s JDK

e Oracle Hotspot & OpenJDK for Java 8
e OpendDK for Java 11
e No customization



Why Graal?

e Performance
- Better optimizations i.e. escape analysis
- YoY improvements

e Easier to learn Graal than C2

e Community



How we use Graal?

e GraalVM CE
e We use Graal as a JIT compiler to replace C2:

java -XX:+UnlockExperimentalVMOptions -XX:+EnableJVM(CI -XX:+UseJVMCICompiler



Spark at Facebook

e Largest SQL query engine at Facebook
e Run on disaggregated compute/storage clusters
e Efficiency is high priority



Spark on GraalVM

Evaluated in early 2020

Started with local benchmarks and small test suites
Rolled out to production in a couple of months

No reliability issues except for one compiler bug



Spark on GraalVM
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Which optimization matters?

e Polymorphic inlining
e Escape analysis
e Speculative optimizations



Polymorphic Inlining

public Object convert(Object input) {
if (input == null) {
return null;

}

int minFields = Math.min(inputFields.size(), outputFields.size());

// Convert the fields

for (int f = 0; f < minFields; f++) {
Object inputFieldValue = 1inpu&e¥-ge . aldData(japlut, 1inp e .gkﬂonnvel‘ter
Object outputFieldValue , Esnvert (inputFieldvalue);

. outputOI.setStructFieldData(o = elds.get(f), ou dValuB)o,ubIeConverter

TextConverter

]

// set the extra fields to null

for (int f = minFields; f < outputFields.size(); f++) {
outputOI.setStructFieldData(output, outputFields.get(f), null);

i

return output;



Escape Analysis

e Reduce object allocations

e Avoid boxing/unboxing

e 5X less CPU consumption of java/lang/Double.valueOf
in profiling results



Speculative Optimizations

publiﬁ Objeét-get(iﬁt 6rdiha1, b;taTypevdafaTypé).{
if (isNullAt(ordinal) || dataType instanceof NullType) {

}

}

return null;
else if (dataType instanceof BooleanType) {
return getBoolean(ordinal);
else if (dataType instanceof ByteType) {
return getByte(ordinal);
else if (dataType instanceof ShortType) {
// many else if (dataType instanceof xxxType)
else if (dataType instanceof MapType) {
return getMap(ordinal);
else if (dataType instanceof UserDefinedType) {
return get(ordinal, ((UserDefinedType)dataType).sqlType());

Long if-else
chains



Not as good

e JVMCI overhead
e Missing intrinsics
i.e. Arrays.fill
¢ Inlining not always beats C2
e No auto vectorization in CE



What else did we try?

e Auto-tune compiler flags using Ax
e Spark code generation using Truffle framework



Auto-tune compiler flags using Ax

e What is Ax?

Ax is a machine learning system that can optimize discrete
configurations using multi-armed bandit optimization, and
continuous configurations using Bayesian optimization.
https://ax.dev/

e What flags did we tune?

TriviallnliningSize, MaximumlinliningSize, etc.




Auto-tune compiler flags using Ax
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Auto-tune compiler flags using Ax

e Experiments show that it has potential to improve
CPU performance for Spark workload, with over 10%
on specific settings.

e Need to address some issues before moving to
production
- make tuning faster
- reduce noise in performance measurement



Spark code generation using Truffle

e Use Truffle to write some SQL operators in Spark
e Early experiment: only a few operators were
prototyped and no plan for production yet



Spark code ¢

We had some
discussion with
people doing
similar projects

eneration using Truffle
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ABSTRACT

Big-data systems have gained significant momentum, and
Apache Spark is becoming a de-facto standard for modern
data analytics. Spark relies on SQL query compilation to op-
timize the execution performance of analytical workloads on
a variety of data sources. Despite its scalable architecture,
Spark’s SQL code generation suffers from significant runtime
overheads related to data access and de-serialization. Such
performance penalty can be significant, especially when ap-
plications operate on human-readable data formats such as
CSV or JSON.

In this paper we present a new approach to query com-
pilation that overcomes these limitations by relying on run-
time profiling and dynamic code generation. Our new SQL
compiler for Spark produces highly-efficient machine code,
leading to speedups of up to 4.4x on the TPC-H benchmark
with textual-form data formats such as CSV or JSON.
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the context of large statistical analyses (expressed in Python
or R). Furthermore, due to the growing popularity of data
lakes [12], the interest in efficient solutions to analyze text-
based data formats such as CSV and JSON is increasing
even further.

At its core, the SQL language support in Spark relies on
a managed language runtime — the Java Virtual Machine
(JVM) — and on query compilation through so-called whole-
stage code generation [7]. Whole-stage code generation in
Spark SQL is inspired by the data-centric produce-consume
model introduced in Hyper [23], which pioneered pipelined
SQL compilation for DBMSs. Compiling SQL to optimize
runtime performance has become common in commercial
DBMSes (e.g., Oracle RDBMS [28], Cloudera Impala [42],
PrestoDB [40], MapDB [38], etc.). Unlike traditional DBM-
Ses, however, Spark SQL compilation does not target a spe-
cific data format (e.g., the columnar memory layout used by
a specific database system), but targets all encoding formats
supported by the platform. In this way, the same compiled
code can be re-used to target multiple data formats such as
CSV or JSON, without having to extend the SQL compiler
back-end for new data formats. Thanks to this approach,



Bugs

o #2493 GraalVM generates wrong result due to
speculative optimization

e #2869 GraalVM: JVMCI-native CompilerThreads are
RUNNABLE but not get processed



Bug #2493

e https://github.com/oracle/graallissues/2493
e Graal does not handle sighed comparison and

unsigned comparison correctly when checking for
disjoint conditions, which results in wrong
If-statement reordering.



Bug #2493

if (x < 0) {
// must be empty so that it will merge with 'else' branch of
// '(x < positive_constant)' w/o doing anything
} else {
if (x < positive_constant) {
never_executed_path;
} else {
}
}
if (x < positive_constant) {
execute_true_path;
} else {
execute_false_path;

}



Bug #2493

if (x < 0) {
// must be empty so that it will merge with 'else' branch of
// '(x < positive_constant)' w/o doing anything
} else {
if (x < positive_constant) {
uncommon_trap;
} else {
3
}
if (x < positive_constant) {
execute_true_path;
} else {
execute_false_path;

}



Bug #2493

if (unsigned_x < positive_constant) {
uncommon_trap;
} else {
if (x < positive_constant) {
execute_true_path;
} else {
execute_false_path;

}



Bug #2493

if (x < positive_constant) {
execute_true_path;
} else {
// bug: these two conditions should not be reordered.
// After reordering, this condition would never happen
if (unsigned_x < positive_constant) {
uncommon_trap;
} else {
execute_false_path;

}



Bug #2493

& Closed GraalVM generates wrong result due to speculative optimization #2493
: helloguo opened this issue on May 22, 2020 - 16 comments

lic9 commented on May 24, 2020 - edited ~ @ oee

@dougxc @tkrodriguez canonicalizeConditionalCascade also uses "join". But as commented, it intentionally
makes unsigned and signed return null for "join", so the logic is correct in canonicalizeConditionalCascade.

| couldn't find any other usage of "join".

tkrodriguez commented on May 29, 2020 Member (@) ---

Yes the other cases are explicitly safe since they treat the null as meaning unknown. Fixed in 2dfa6ab

=



Bug #2869

e https://github.com/oracle/graallissues/2869
e JVMCI-native CompilerThreads halted and no new

methods were compiled
e Can not reproduce locally
e Workaround: disable libgraal



Bug #2869

GraalVM: JVMCI-native CompilerThreads are RUNNABLE but not get processed #2869
P lic9 opened this issue on Sep 23, 2020 - 6 comments

We were running some Presto jobs on GraalVM and we found on 1 of the worker node, Graal stopped compiling new
methods for more than 1 day. From thread dump, we saw all JVMCI-native CompilerThreads were at RUNNABLE but
not consume any CPU (‘cpu’ metric from thread dump stayed the same and only 'elapsed' increased). The issue
seemed only apply to JVMCI-native CompilerThreads. C1 CompilerThread was normal and tiered 3 C1 compilations
were triggered for those new methods. The worker process had a few thousands of threads, and JVMCI-native
CompilerThreads and C1 CompilerThread seem have the same thread priority.

We don't have a way to reproduce the issue locally.

GraalVM version: GraalVM CE 20.2.0
JDK Major Version: 11

OS: CentOS

Architecture: AMD64



Now and in the future

e Most CPU-bound big data services on GraalVM
- Presto has > 5% CPU improvement and GC pause
reduction switching to GraalVM

e Pushing for memory-bound services
- Shenandoah GC, ZGC support

e Leveraging other features like native image

e Adding customized optimization passes for Facebook
workloads



Community contribution

e Open to contribute patches to open source
e Open to ideas/collaborations to make community
better



Thank you!



