GraalVM at Facebook

Chen Li
2021 Graal Workshop

About me...

e Software Engineer at Facebook (Programming
Languages & Runtimes Team)

e Focus on Java Efficiency

e Previously at Linkedln and Azul Systems

Agenda

Java at Facebook
Why GraalVM
Spark on GraalVM
GraalVM Bugs
Future Plan

Facebook

~1(0

1.84 Billion DAU
2.80 Billion MAU

Source: Facebook Q4 2020 earnings call

Where is Java used?

e Big Data Services

- Spark, Presto, etc.
e Backend Services
e Mobile: Android

Where is Java used?

ig Data Service
- Spark, Presto, etc.
ackend Service

Facebook’s JDK

e Oracle Hotspot & OpenJDK for Java 8
e OpendDK for Java 11
e No customization

Why Graal?

e Performance
- Better optimizations i.e. escape analysis
- YoY improvements

e Easier to learn Graal than C2

e Community

How we use Graal?

e GraalVM CE
e We use Graal as a JIT compiler to replace C2:

java -XX:+UnlockExperimentalVMOptions -XX:+EnableJVM(CI -XX:+UseJVMCICompiler

Spark at Facebook

e Largest SQL query engine at Facebook
e Run on disaggregated compute/storage clusters
e Efficiency is high priority

Spark on GraalVM

Evaluated in early 2020

Started with local benchmarks and small test suites
Rolled out to production in a couple of months

No reliability issues except for one compiler bug

Spark on GraalVM

Spark CPU Usage

GraalVM
Rollout Start

10% Reduction

A couple of months
Date

GraalVM
Rollout End

Which optimization matters?

e Polymorphic inlining
e Escape analysis
e Speculative optimizations

Polymorphic Inlining

public Object convert(Object input) {
if (input == null) {
return null;

}

int minFields = Math.min(inputFields.size(), outputFields.size());

// Convert the fields

for (int f = 0; f < minFields; f++) {
Object inputFieldValue = 1inpu&e¥-ge . aldData(japlut, 1inp e .gkﬂonnvel‘ter
Object outputFieldValue , Esnvert (inputFieldvalue);

. outputOI.setStructFieldData(o = elds.get(f), ou dValuB)o,ubIeConverter

TextConverter

]

// set the extra fields to null

for (int f = minFields; f < outputFields.size(); f++) {
outputOI.setStructFieldData(output, outputFields.get(f), null);

i

return output;

Escape Analysis

e Reduce object allocations

e Avoid boxing/unboxing

e 5X less CPU consumption of java/lang/Double.valueOf
in profiling results

Speculative Optimizations

publiﬁ Objeét-get(iﬁt 6rdiha1, b;taTypevdafaTypé).{
if (isNullAt(ordinal) || dataType instanceof NullType) {

}

}

return null;
else if (dataType instanceof BooleanType) {
return getBoolean(ordinal);
else if (dataType instanceof ByteType) {
return getByte(ordinal);
else if (dataType instanceof ShortType) {
// many else if (dataType instanceof xxxType)
else if (dataType instanceof MapType) {
return getMap(ordinal);
else if (dataType instanceof UserDefinedType) {
return get(ordinal, ((UserDefinedType)dataType).sqlType());

Long if-else
chains

Not as good

e JVMCI overhead
e Missing intrinsics
i.e. Arrays.fill
¢ Inlining not always beats C2
e No auto vectorization in CE

What else did we try?

e Auto-tune compiler flags using Ax
e Spark code generation using Truffle framework

Auto-tune compiler flags using Ax

e What is Ax?

Ax is a machine learning system that can optimize discrete
configurations using multi-armed bandit optimization, and
continuous configurations using Bayesian optimization.
https://ax.dev/

e What flags did we tune?

TriviallnliningSize, MaximumlinliningSize, etc.

Auto-tune compiler flags using Ax

/ Testing Cluster \

(Spark on Spark on 1
/ \ new confi GraalVM GraalVM
Autotuner
Spark on
V GraalVM nue
L Tuner 1 J \ /
Tuner 2 V Save
[J @Query @ Metrics
Metrics " 4

[Mysql 1

Auto-tune compiler flags using Ax

e Experiments show that it has potential to improve
CPU performance for Spark workload, with over 10%
on specific settings.

e Need to address some issues before moving to
production
- make tuning faster
- reduce noise in performance measurement

Spark code generation using Truffle

e Use Truffle to write some SQL operators in Spark
e Early experiment: only a few operators were
prototyped and no plan for production yet

Spark code ¢

We had some
discussion with
people doing
similar projects

eneration using Truffle

Dynamic Speculative Optimizations for SQL Compilation in
Apache Spark

Filippo Schiavio Daniele Bonetta Walter Binder
Universita della Svizzera VM Research Group Universita della Svizzera
italiana (USI) Oracle Labs italiana (USI)
Switzerland USA Switzerland

filippo.schiavio@usi.ch

ABSTRACT

Big-data systems have gained significant momentum, and
Apache Spark is becoming a de-facto standard for modern
data analytics. Spark relies on SQL query compilation to op-
timize the execution performance of analytical workloads on
a variety of data sources. Despite its scalable architecture,
Spark’s SQL code generation suffers from significant runtime
overheads related to data access and de-serialization. Such
performance penalty can be significant, especially when ap-
plications operate on human-readable data formats such as
CSV or JSON.

In this paper we present a new approach to query com-
pilation that overcomes these limitations by relying on run-
time profiling and dynamic code generation. Our new SQL
compiler for Spark produces highly-efficient machine code,
leading to speedups of up to 4.4x on the TPC-H benchmark
with textual-form data formats such as CSV or JSON.

PVLDB Reference Format:

Filippo Schiavio, Daniele Bonetta, Walter Binder. Dynamic Spec-
ulative Optimizations for SQL Compilation in Apache Spark.
PVLDB, 13(5): 754-767, 2020.

DOI: https://doi.org/10.14778/3377369.3377382

daniele.bonetta@oracle.com walter.binder@usi.ch

the context of large statistical analyses (expressed in Python
or R). Furthermore, due to the growing popularity of data
lakes [12], the interest in efficient solutions to analyze text-
based data formats such as CSV and JSON is increasing
even further.

At its core, the SQL language support in Spark relies on
a managed language runtime — the Java Virtual Machine
(JVM) — and on query compilation through so-called whole-
stage code generation [7]. Whole-stage code generation in
Spark SQL is inspired by the data-centric produce-consume
model introduced in Hyper [23], which pioneered pipelined
SQL compilation for DBMSs. Compiling SQL to optimize
runtime performance has become common in commercial
DBMSes (e.g., Oracle RDBMS [28], Cloudera Impala [42],
PrestoDB [40], MapDB [38], etc.). Unlike traditional DBM-
Ses, however, Spark SQL compilation does not target a spe-
cific data format (e.g., the columnar memory layout used by
a specific database system), but targets all encoding formats
supported by the platform. In this way, the same compiled
code can be re-used to target multiple data formats such as
CSV or JSON, without having to extend the SQL compiler
back-end for new data formats. Thanks to this approach,

Bugs

o #2493 GraalVM generates wrong result due to
speculative optimization

e #2869 GraalVM: JVMCI-native CompilerThreads are
RUNNABLE but not get processed

Bug #2493

e https://github.com/oracle/graallissues/2493
e Graal does not handle sighed comparison and

unsigned comparison correctly when checking for
disjoint conditions, which results in wrong
If-statement reordering.

Bug #2493

if (x < 0) {
// must be empty so that it will merge with 'else' branch of
// '(x < positive_constant)' w/o doing anything
} else {
if (x < positive_constant) {
never_executed_path;
} else {
}
}
if (x < positive_constant) {
execute_true_path;
} else {
execute_false_path;

}

Bug #2493

if (x < 0) {
// must be empty so that it will merge with 'else' branch of
// '(x < positive_constant)' w/o doing anything
} else {
if (x < positive_constant) {
uncommon_trap;
} else {
3
}
if (x < positive_constant) {
execute_true_path;
} else {
execute_false_path;

}

Bug #2493

if (unsigned_x < positive_constant) {
uncommon_trap;
} else {
if (x < positive_constant) {
execute_true_path;
} else {
execute_false_path;

}

Bug #2493

if (x < positive_constant) {
execute_true_path;
} else {
// bug: these two conditions should not be reordered.
// After reordering, this condition would never happen
if (unsigned_x < positive_constant) {
uncommon_trap;
} else {
execute_false_path;

}

Bug #2493

& Closed GraalVM generates wrong result due to speculative optimization #2493
: helloguo opened this issue on May 22, 2020 - 16 comments

lic9 commented on May 24, 2020 - edited ~ @ oee

@dougxc @tkrodriguez canonicalizeConditionalCascade also uses "join". But as commented, it intentionally
makes unsigned and signed return null for "join", so the logic is correct in canonicalizeConditionalCascade.

| couldn't find any other usage of "join".

tkrodriguez commented on May 29, 2020 Member (@) ---

Yes the other cases are explicitly safe since they treat the null as meaning unknown. Fixed in 2dfa6ab

=

Bug #2869

e https://github.com/oracle/graallissues/2869
e JVMCI-native CompilerThreads halted and no new

methods were compiled
e Can not reproduce locally
e Workaround: disable libgraal

Bug #2869

GraalVM: JVMCI-native CompilerThreads are RUNNABLE but not get processed #2869
P lic9 opened this issue on Sep 23, 2020 - 6 comments

We were running some Presto jobs on GraalVM and we found on 1 of the worker node, Graal stopped compiling new
methods for more than 1 day. From thread dump, we saw all JVMCI-native CompilerThreads were at RUNNABLE but
not consume any CPU (‘cpu’ metric from thread dump stayed the same and only 'elapsed' increased). The issue
seemed only apply to JVMCI-native CompilerThreads. C1 CompilerThread was normal and tiered 3 C1 compilations
were triggered for those new methods. The worker process had a few thousands of threads, and JVMCI-native
CompilerThreads and C1 CompilerThread seem have the same thread priority.

We don't have a way to reproduce the issue locally.

GraalVM version: GraalVM CE 20.2.0
JDK Major Version: 11

OS: CentOS

Architecture: AMD64

Now and in the future

e Most CPU-bound big data services on GraalVM
- Presto has > 5% CPU improvement and GC pause
reduction switching to GraalVM

e Pushing for memory-bound services
- Shenandoah GC, ZGC support

e Leveraging other features like native image

e Adding customized optimization passes for Facebook
workloads

Community contribution

e Open to contribute patches to open source
e Open to ideas/collaborations to make community
better

Thank you!

