
A native Clojure interpreter for scripting

Michiel Borkent

@borkdude

2021-02-27

The 2021 Graal Workshop

GraalVM + Clojure: 

Static analyzer and linter for Clojure

• Native Clojure scripting tool, single binary, no JVM (GraalVM compiled), fast startup

• Alternative to byte code compilation by Clojure compiler

• Prevents context switch to bash for Clojure devs writing build scripts

• Batteries included (arg parsing, JSON, http client/server, ...)

• Supports multi-threading

• Source compatibility with JVM Clojure + GraalVM = sane upgrade path = low risk adoption

$ time bb '(+ 1 2 3)' 
6  
0.00s user 0.00s system 67% cpu 0.013 total

The 5 second rule

• Startup time vs performance

• Sweet spot: short running scripts (< 5 seconds): use babashka (Clojure
interpreter)

• Long running performance intensive processes: use JVM Clojure
compiler

• Compile with GraalVM native-image for fast startup

Namespaces 
Built in libs

Shelling out

Java interop

Parse sqlite CSV output

On the JVM about 1.3s

Enhancement: sql lib tools.deps /
maven

integration

+50ms for
loading 1400

lines of
Clojure 

 
100ms total

Enhancement: sqlite pod
Sqlite pod: bb

RPC-like
extension

Pods are
started only
once: now
80ms total

No more shell
output

parsing,
normal

function calls

Supported classes for interop:
reflection config

Interpreter: SCI
• Split out into its own project: Small Clojure Interpreter (sci)

• Written in Clojure itself: .cljc -> runs on JVM and ClojureScript.

• Leveraged by other native CLIs and ClojureScript projects

• Performance: not as good as compiled Clojure or a Truffle
interpreter, but good enough for typical bash-like scripts

• Yields small images (~11mb) / JS bundles (~120kb gzipped)

• Can be used to glue together natively compiled functions
using interpreted code

Optimizations

Resolving
symbols to

fns, locals and
classes

The actual
function calls
to native and

interpreted fns

Text to s-
expressions

S-expressions
to "evaluator"

forms

Push as much
work as

possible to
analyzer

instead of
evaluator

Sci: eval-string
(require '[sci.core :as sci])
(sci/eval-string "(+ 1 2 3)") ;;=> 6

(def ctx (sci/init {:namespaces {'foo {'x 1}}})) 
(sci/eval-string* ctx "foo/x") ;;=> 1

(sci/eval-string* ctx " 
 (require '[foo :refer [x]]) 
 (defn add-x [n] (+ n x))")
 
(sci/eval-string* ctx "(add-x 10)") ;;=> 11

Sci: mixing native and
interpreted fns

(def ctx (sci/init {:namespaces
 {'clojure.core {'assoc assoc}
 'cheshire.core {'generate-string 
 generate-string}}}))

(sci/eval-string* ctx 
 "(cheshire.core/generate-string (assoc {:a 1} :b 2))")

;;=> {"a":1,"b":2}

Bootleg: sci-based static site CLI

NextJournal (sci in browser)

clj-kondo hooks

Clojure + GraalVM

• CLJ-1472: issue with GraalVM and locking macro

• Solved in 1.10.2

• MethodHandle issue: solved in GraalVM 21.0.0

• https://github.com/lread/clj-graal-docs

• https://github.com/BrunoBonacci/graalvm-clojure/

https://github.com/lread/clj-graal-docs
https://github.com/BrunoBonacci/graalvm-clojure/
https://github.com/lread/clj-graal-docs
https://github.com/BrunoBonacci/graalvm-clojure/

Truffle

• Espresso compilation of Clojure compiler?

• Clojure on Truffle? (Thesis from 2015)

• AOT of guest language?

• Defining new classes at runtime?

• Mixing host language AOT-ed fns called from guest
language?

Selected talks:

• Babashka and GraalVM; taking Clojure to new places

• Writing Clojure on the command line

• Babashka and sci internals

• https://github.com/babashka/babashka

• https://github.com/borkdude/sci

On Github:

Michiel Borkent

@borkdude

https://youtu.be/3EUMA6bd-xQ
https://youtu.be/RogyxI-GaGQ
https://www.youtube.com/watch?v=pgNp4Lk3gf0
https://youtu.be/3EUMA6bd-xQ
https://youtu.be/RogyxI-GaGQ
https://www.youtube.com/watch?v=pgNp4Lk3gf0
https://github.com/borkdude/babashka
https://github.com/borkdude/sci
https://github.com/borkdude/babashka
https://github.com/borkdude/sci

