
Exploring speedup opportunities in the
GraalVM compiler
CGO Graal Workshop, Feb 27th 2021

François Farquet
Principal Performance Engineer
GraalVM compiler team
Oracle Labs, Switzerland

@FFarquet

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle's
products may change and remains at the sole discretion of Oracle Corporation.

GraalVM Native Image technology (including Substrate VM) is Early Adopter technology. It is available
only under an early adopter license and remains subject to potentially significant further changes,
compatibility testing and certification.

Safe Harbor Statement

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted2

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted3

standalone

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted4

https://www.graalvm.org/downloads/

https://www.graalvm.org/downloads/

Main metrics to optimize for:

• Peak performance
• Throughput and/or latency at steady state

• Warmup time
• time to reach peak performance

Other metrics to watch:
• Compilation time
• Code size installed
• Memory footprint

Improve JIT compiler performance

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted5

How?

1. Compiler R&D
• apply novel techniques
• Explore graph patterns
• add new intrinsics
• Investigate important patterns reported by customers/community
• Optimize new technology: Scala, Java Streams, popular frameworks
• …

2. Day to day performance tracking

3. Chasing opportunities within the GraalVM compiler

Improve JIT compiler performance

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted6

• Regression tracking
• Make sure that today’s performance is better or equal than yesterday’s
• Can be challenging…

• The reason can be:
• the JVM (often GC or compiler)
• The benchmark
• The infrastructure

Day-to-day performance tracking

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted7

• Baseline comparison against HotSpot
• It’s a moving target !
• JDK libraries change
• HotSpot improves

If HotSpot outperforms GraalVM in a benchmark, this is a good news!
It usually means there is a low-hanging fruit to optimize the GraalVM compiler further.

Day-to-day performance tracking

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted8

Play with command line flags:

Chasing opportunities within the GraalVM compiler

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted9

java -XX:+PrintFlagsFinal -XX:+JVMCIPrintProperties -version

Flags OpenJDK 11.0.9 GraalVM CE 20.3 GraalVM EE 20.3

-XX:* 668 668 668

-Dgraal.* - 248 554

1. Debugging and tracing flags: enable tracing, dumping, printing, method filters, etc

2. Debug compiler phases by forcing a decision,
skipping the heuristic

3. Enable/Disable an optimization
or a compiler phase

4. Tweak heuristics
Modifying the behavior of the compiler

Graal flags categories

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted10

…
graal.OptDevirtualizeInvokesOptimistically = true [Boolean]
graal.OptEarlyReadElimination = true [Boolean]
graal.OptEliminateGuards = true [Boolean]
graal.OptFloatingReads = true [Boolean]
graal.OptImplicitNullChecks = true [Boolean]
graal.OptReadElimination = true [Boolean]
graal.OptScheduleOutOfLoops = true [Boolean]
graal.PartialEscapeAnalysis = true [Boolean]
graal.PartialUnroll = true [Boolean]
…

https://github.com/oracle/graal/blob/master/compiler/src/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/loop/DefaultLoopPolicies.java

https://github.com/oracle/graal/blob/master/compiler/src/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/loop/DefaultLoopPolicies.java

• -Dgraal.PeelALot=true (default: false)
• forces the peeling of all candidate loops

• Found several microbenchmarks where
performance improved greatly when enabling
this debug flag

• Missed opportunity to hoist
instanceofs/checkcasts out of loops

• Fixed in:

Improve `InstanceOfNode` anchoring.
https://github.com/oracle/graal/commit/20c3
421a0da0168876957f614f91dacd696252b3

Debug compiler phases by forcing a decision

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted11

https://github.com/oracle/graal/commit/20c3421a0da0168876957f614f91dacd696252b3

Computationally, it becomes more challenging if one wants to explore numeric fields.
To explore a set of values of a single option, it requires:

• B = number of benchmarks to test
• M = number of values to test
• N = number of experiment repetitions to get reliable numbers
• T = average time to run a benchmark

For a single value to test (M=1) and to get a full picture, one may want:
B = 60 (for DaCapo, ScalaBench, Renaissance, SpecJVM2008)
N = 10
T = 5 minutes

For a single value of a single option !

Tweak heuristics

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted12

B*M*N*T minutes

3000 minutes = 50 machine hours

After weeks of benchmarking, we understood better how GraalVM Enterprise compiler reacts to its
inliner option values.

• Led to better default values for some parameters
• Improving some benchmarks from Renaissance, ScalaBench, SpecJVM2008
• Peak performance improved by 1% to 40%
• at no extra compilation time or warmup cost

Tweak heuristics

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted13

However, there are other options that lead to
great peak performance improvements at some
compilation time cost.

Performance change

Compilation time

Tweak heuristics

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted14

Peak performance improvement Compilation time impact

Tweak heuristics

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted15

Let’s expose those trade-offs to the user!

Introducing a new GraalVM Enterprise flag –Dgraal.TuneInlinerExploration=[-1,1] (default: 0)

The closer the value is to -1, the less aggressive the inliner, the closer it is to 1, the more aggressive it is.

Tweak heuristics

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted16

Thank you!

Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted17

@FFarquet

