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Drop-in replacement for Oracle Java 8 and Java 11 
• Run your Java application faster 

Ahead-of-time compilation for Java 
• Create standalone binaries with low footprint 

High-performance JavaScript, Python, Ruby, R, ... 
• The first VM for true polyglot programming 
• Implement your own language or DSL

What is Graal VM?
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 FREE on Oracle Cloud!
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GraalVM Open Source

Open Source LOC actively maintained by GraalVM team

Total: 3,640,000 lines of code
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Warmup effects of pure Java (jargraal) 
• Increased compilation with C1 
• Increased heap allocation 
• Gradual warmup of Graal itself 

Visible as normal Java code 
• Profile pollution 
• Java debugging and profiling tools 

Complicates JDK Testing 
• -Xcomp, -Xbatch and -XX:-TieredCompilation

Why libgraal
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Graal compiled with native image as a shared library 
• It's actually libjvmcicompiler.so 
• Interacts with HotSpot more like C1 or C2 

Default way of using Graal in GraalVM since 19.0 
• Required JVMCI support in Labs JDK 8, 11 and 13+ 
• Can be loaded by JDK8, JDK11 and JDK13+ 

- Required JVMCI and Graal API and implementation changes 
https://medium.com/graalvm/libgraal-graalvm-compiler-as-a-precompiled-
graalvm-native-image-26e354bee5c

What is libgraal
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Native Image processing
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Builds a standalone executable or library from a set of Java classes 
Closed World Assumption 

• The points-to analysis needs to see all bytecode 

- Removes unused classes, methods, and fields cannot be removed 

- Compiles all reachable code 
• Dynamic parts of Java require configuration at build time 

- Reflection, JNI, Proxy, resources, ... 
• No loading of new classes at run time

Native image
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Execution at run time starts with an initial heap: the “image heap” 
• Objects are allocated in the Java VM that runs the image generator 
• Heap snapshotting gathers all objects that are reachable at run time 

Do things once at build time instead at every application startup 
• Class initializers, initializers for static and static final fields 
• Explicit code that is part of a so-called “Feature” 

Examples for objects in the image heap 
• java.lang.Class objects, Enum constants

Native Image Heap
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Minimize differences between jargraal and libgraal paths 
• Easier to maintain/debug 

Use existing native image machinery as much as possible 
• JNI 
• Encoded graphs 

Rely on explicit logic instead of substitutions where possible 
• Improves maintainability 

Allow both jargraal and libgraal JVMCI runtimes

Design goals of libgraal
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Create a stronger distinction between compiler objects and runtime objects 
• Use JavaConstant instead of Object or subtypes in API 
• Encoding of SpeculationReason as JavaConstant 
• Eliminate exposed references to Class and other Objects 

Compiler environment might not be the same as the execution environment 
• Use of Unsafe to get offsets instead of querying JVMCI directly 
• Use of Java reflection instead of JVMCI APIs 

Integrated in JDK11 to ease later backporting 
• JDK-8205824

JVMCI API changes
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JVMCI with jargraal
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HotSpot assumes JVMCI objects belong to its Java heap 
• C++ code must have indirect access to JVMCI objects 

2 independent runtimes and GC 
• reduce coupling between JVMCI and HotSpot 

Native image Java code can't interact directly with HotSpot objects 
• More JVMCI native methods 

jdk.vm.ci.services.Services 
• IS_BUILDING_NATIVE_IMAGE/IS_IN_NATIVE_IMAGE  

Caching of various service lookups 
Caching of Annotations required by the compiler

JVMCI implementation changes to support libgraal
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JVMCIEnv and JVMCIObject 
• Abstracts away to interact with JVMCI objects 

- Creating constants 
• Use JNI under the covers to talk to libgraal 

- Puts some restrictions on the HotSpot code 

- Increased overhead 
Existing code translates and reads fairly naturally 
Looser coupling between HotSpot and JVMCI objects where necessary 

• InstalledCode and method 
• Speculations become nmethod data

HotSpot C++ Changes
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HotSpot JVMCI Example before

C2V_VMENTRY(jobject, getConstantPool, (JNIEnv *, jobject, jobject object_handle))
  constantPoolHandle cp;
  oop object = JNIHandles::resolve(object_handle);
  if (object == NULL) {
    THROW_0(vmSymbols::java_lang_NullPointerException());
  }
  if (object->is_a(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass())) {
    cp = CompilerToVM::asMethod(object)->constMethod()->constants();
  } else if (object->is_a(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass())) {
    cp = InstanceKlass::cast(CompilerToVM::asKlass(object))->constants();
  } else {
    THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
                err_msg("Unexpected type: %s", object->klass()->external_name()));
  }
  assert(!cp.is_null(), "npe");
  JavaValue method_result(T_OBJECT);
  JavaCallArguments args;
  args.push_long((jlong) (address) cp());
  JavaCalls::call_static(&method_result, SystemDictionary::HotSpotConstantPool_klass(), 
vmSymbols::fromMetaspace_name(), vmSymbols::constantPool_fromMetaspace_signature(), &args, 
CHECK_NULL);
  return JNIHandles::make_local(THREAD, (oop)method_result.get_jobject());
}
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HotSpot JVMCI Example after

C2V_VMENTRY_NULL(jobject, getConstantPool, (JNIEnv* env, jobject, jobject object_handle))
  constantPoolHandle cp;
  JVMCIObject object = JVMCIENV->wrap(object_handle);
  if (object.is_null()) {
    JVMCI_THROW_NULL(NullPointerException);
  }
  if (JVMCIENV->isa_HotSpotResolvedJavaMethodImpl(object)) {
    cp = JVMCIENV->asMethod(object)->constMethod()->constants();
  } else if (JVMCIENV->isa_HotSpotResolvedObjectTypeImpl(object)) {
    cp = InstanceKlass::cast(JVMCIENV->asKlass(object))->constants();
  } else {
    JVMCI_THROW_MSG_NULL(IllegalArgumentException,
                err_msg("Unexpected type: %s", JVMCIENV->klass_name(object)));
  }
  assert(!cp.is_null(), "npe");

  JVMCIObject result = JVMCIENV->get_jvmci_constant_pool(cp, JVMCI_CHECK_NULL);
  return JVMCIENV->get_jobject(result);
}
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Uses serialized representation of parsed graphs 
• No bytecodes available 
• Faster than parsing 

Fully initialized compiler stored in image heap 
Single JVMCI namespace 

• Only Substrate types

Dynamic Graal compilation in native image binaries
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Hybrid JVMCI environment 
• BytecodeParser is used for Java code 
• encoded graphs used for snippets and method substitutions 

- Refer to types that are actually part of libgraal 
Compiler must be initialized at start of isolate 

• Connections between JVMCI and HotSpot must be built dynamically

Dynamic Graal compilation in libgraal
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Snippets are stylized pieces of Java code that implement low level features 
• Fast/slow allocation paths or identityHashCode for example 

Parsed into a graph and then inlined to replace other nodes 
• @Fold is used to inject constant values from the environment 

- Field offsets or mark word values for instance 

- Boxes result into a JavaConstant 
• @NodeIntrinsic is used to insert a particular IR node 

- Lets snippets perform low level operations 

- Often takes the result of @Fold as an input

Snippets and method substitutions
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Snippet Example: fast identityHashCode

@Snippet
static int identityHashCodeSnippet(Object x) {
  if (probability(NOT_FREQUENT_PROBABILITY, x == null)) {
    return 0;
  }

  Word mark = loadWordFromObject(x, markOffset());

  final Word biasedLock = mark.and(
                        biasedLockMaskInPlace());
  if (probability(FAST_PATH_PROBABILITY, 
                        biasedLock.equal(WordFactory.unsigned(
                        unlockedMask())))) {
    int hash = (int) mark.unsignedShiftRight(
                       identityHashCodeShift()).rawValue();
    if (probability(FAST_PATH_PROBABILITY, 
                  hash != 
uninitializedIdentityHashCodeValue())) {
      return hash;
    }
  }

  return identityHashCode(IDENTITY_HASHCODE, x);
}

Node intrinsicNode intrinsic

Constant folding during snippet parsing

Machine-word sized value

The snippet is in class HashCodeSnippets
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Graph is parsed normally but all @Fold operations are deferred 
• NodeIntrinsic might be deferred as well 

Graph is encoded and stored in the libgraal heap 
• The graph may contain constant references to HotSpot JVMCI types 

- Converted to unresolved types during image building 
During dynamic compilation the snippet is decoded 

• Fold and NodeIntrinsic are processed during decode 
• Symbolic type references are resolved against HotSpot

Snippet preparation and use in libgraal
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Like a snippet but inlined on the fly by the BytecodeParser 
• Uses similar tricks to a Snippet but is often simpler 
• Has to be careful about FrameStates 

More problematic for libgraal because it's not a graph 
• Alternate compilation mode for libgraal to encode the graph 
• Alternate BytecodeParser path to inline the decoded graph 

More likely to reference random JDK types 
• May complicate decoding the graph

Method substitutions
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Method substitution example: SHA crypt

    @MethodSubstitution(isStatic = false)
    static void implCompress0(Object receiver, byte[] buf, int ofs) {
        Object realReceiver = PiNode.piCastNonNull(receiver,
                              HotSpotReplacementsUtil.methodHolderClass(INJECTED_INTRINSIC_CONTEXT));
        Object state = RawLoadNode.load(realReceiver, stateOffset(INJECTED_INTRINSIC_CONTEXT),
                                        JavaKind.Object, LocationIdentity.any());
        Word bufAddr = WordFactory.unsigned(ComputeObjectAddressNode.get(buf,
                       ReplacementsUtil.getArrayBaseOffset(INJECTED_METAACCESS, JavaKind.Byte) + ofs));
        Word stateAddr = WordFactory.unsigned(ComputeObjectAddressNode.get(state,
                         ReplacementsUtil.getArrayBaseOffset(INJECTED_METAACCESS, JavaKind.Int)));
        HotSpotBackend.sha5ImplCompressStub(bufAddr, stateAddr);
    }

    @Fold
    static long stateOffset(@InjectedParameter IntrinsicContext context) {
        return HotSpotReplacementsUtil.getFieldOffset(HotSpotReplacementsUtil.methodHolderClass(context), 
"state");
    }

Injected HotSpot JVMCI typeAvoid use of Unsafe

Machine-word sized value
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Native image GC is slower than HotSpot GC 
• For most compiles it’s not an issue 
• Very large graphs 
• Serializes multiple compilation threads 

Increased JNI overhead from JNI 
• Mainly affects the final code installation step 

Native image compiled Graal may be slower than fully warmed up jargraal 
• Mitigated in GraalVM EE with PGO and compressed oops 

Large shared library

Tradeoffs
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Truffle runtime can use libgraal to compile Truffle methods 
• Truffle runtime must always run as normal Java code 
• libgraal exports a Truffle compilation entry point 

- Appears as a normal Java native method 

- See substratevm/ImplementingNativeMethodsInJavaWithSVM.md 
• Invoked by passing JVMCI objects from jargraal to libgraal 

- All compilation is performed by libgraal 
• Faster start up time

Truffle partial evaluation using libgraal
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Investigating multiple isolates 
• Complicates monitoring and output 

Completely isolate libgraal types from HotSpot runtime 
• libgraal becomes completely standalone 

GC tuning 
Reduce library size 

• Make some Graal options statically disabled 

Future work




