
Tom Rodriguez
GraalVM Compiler Team

Graal as a native JIT in GraalVM

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

GraalVM Native Image technology (including SubstrateVM) is early adopter technology. It is available
only under an early adopter license and remains subject to potentially significant further changes,
compatibility testing and certification.

Safe harbor statement

Copyright © 2020, Oracle and/or its affiliates2

Native Image

3

4

Drop-in replacement for Oracle Java 8 and Java 11
• Run your Java application faster

Ahead-of-time compilation for Java
• Create standalone binaries with low footprint

High-performance JavaScript, Python, Ruby, R, ...
• The first VM for true polyglot programming
• Implement your own language or DSL

What is Graal VM?

5

 FREE on Oracle Cloud!

6

GraalVM Open Source

Open Source LOC actively maintained by GraalVM team

Total: 3,640,000 lines of code

7

Warmup effects of pure Java (jargraal)
• Increased compilation with C1
• Increased heap allocation
• Gradual warmup of Graal itself

Visible as normal Java code
• Profile pollution
• Java debugging and profiling tools

Complicates JDK Testing
• -Xcomp, -Xbatch and -XX:-TieredCompilation

Why libgraal

8

Graal compiled with native image as a shared library
• It's actually libjvmcicompiler.so
• Interacts with HotSpot more like C1 or C2

Default way of using Graal in GraalVM since 19.0
• Required JVMCI support in Labs JDK 8, 11 and 13+
• Can be loaded by JDK8, JDK11 and JDK13+

- Required JVMCI and Graal API and implementation changes
https://medium.com/graalvm/libgraal-graalvm-compiler-as-a-precompiled-
graalvm-native-image-26e354bee5c

What is libgraal

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable or

shared library

9

Native Image processing

10

Builds a standalone executable or library from a set of Java classes
Closed World Assumption

• The points-to analysis needs to see all bytecode

- Removes unused classes, methods, and fields cannot be removed

- Compiles all reachable code
• Dynamic parts of Java require configuration at build time

- Reflection, JNI, Proxy, resources, ...
• No loading of new classes at run time

Native image

11

Execution at run time starts with an initial heap: the “image heap”
• Objects are allocated in the Java VM that runs the image generator
• Heap snapshotting gathers all objects that are reachable at run time

Do things once at build time instead at every application startup
• Class initializers, initializers for static and static final fields
• Explicit code that is part of a so-called “Feature”

Examples for objects in the image heap
• java.lang.Class objects, Enum constants

Native Image Heap

12

Minimize differences between jargraal and libgraal paths
• Easier to maintain/debug

Use existing native image machinery as much as possible
• JNI
• Encoded graphs

Rely on explicit logic instead of substitutions where possible
• Improves maintainability

Allow both jargraal and libgraal JVMCI runtimes

Design goals of libgraal

HotSpot Code CacheHotSpot Metaspace

HotSpot

13

ResolvedJavaMethod

ResolvedJavaType

java.lang.Class

Speculation

InstalledCode

SpeculationLog

InstanceKlass Method nmethod

MyUserObject
JavaConstant

Meta
Access
Context

Graal

Original JVMCI design

14

Create a stronger distinction between compiler objects and runtime objects
• Use JavaConstant instead of Object or subtypes in API
• Encoding of SpeculationReason as JavaConstant
• Eliminate exposed references to Class and other Objects

Compiler environment might not be the same as the execution environment
• Use of Unsafe to get offsets instead of querying JVMCI directly
• Use of Java reflection instead of JVMCI APIs

Integrated in JDK11 to ease later backporting
• JDK-8205824

JVMCI API changes

HotSpot Metaspace

InstanceKlass Method

MethodData

15

ResolvedJavaMethod

ResolvedJavaType

java.lang.Class

Speculation

InstalledCode

SpeculationLog

HotSpot Code Cache

nmethod

MyUserObject

JavaConstant

Graal

HotSpot Heap

JVMCI Handles

JavaConstant

JVMCI with jargraal

HotSpot Metaspace

InstanceKlass Method

MethodData

16

ResolvedJavaMethod

ResolvedJavaType

java.lang.Class

Speculation

InstalledCode

SpeculationLog

HotSpot Code Cache

nmethod

MyUserObject

JavaConstant

Graal

HotSpot Heap Native Image Heap

JVMCI Handles

JavaConstant

JVMCI with libgraal

17

HotSpot assumes JVMCI objects belong to its Java heap
• C++ code must have indirect access to JVMCI objects

2 independent runtimes and GC
• reduce coupling between JVMCI and HotSpot

Native image Java code can't interact directly with HotSpot objects
• More JVMCI native methods

jdk.vm.ci.services.Services
• IS_BUILDING_NATIVE_IMAGE/IS_IN_NATIVE_IMAGE

Caching of various service lookups
Caching of Annotations required by the compiler

JVMCI implementation changes to support libgraal

18

JVMCIEnv and JVMCIObject
• Abstracts away to interact with JVMCI objects

- Creating constants
• Use JNI under the covers to talk to libgraal

- Puts some restrictions on the HotSpot code

- Increased overhead
Existing code translates and reads fairly naturally
Looser coupling between HotSpot and JVMCI objects where necessary

• InstalledCode and method
• Speculations become nmethod data

HotSpot C++ Changes

19

HotSpot JVMCI Example before

C2V_VMENTRY(jobject, getConstantPool, (JNIEnv *, jobject, jobject object_handle))
 constantPoolHandle cp;
 oop object = JNIHandles::resolve(object_handle);
 if (object == NULL) {
 THROW_0(vmSymbols::java_lang_NullPointerException());
 }
 if (object->is_a(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass())) {
 cp = CompilerToVM::asMethod(object)->constMethod()->constants();
 } else if (object->is_a(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass())) {
 cp = InstanceKlass::cast(CompilerToVM::asKlass(object))->constants();
 } else {
 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
 err_msg("Unexpected type: %s", object->klass()->external_name()));
 }
 assert(!cp.is_null(), "npe");
 JavaValue method_result(T_OBJECT);
 JavaCallArguments args;
 args.push_long((jlong) (address) cp());
 JavaCalls::call_static(&method_result, SystemDictionary::HotSpotConstantPool_klass(),
vmSymbols::fromMetaspace_name(), vmSymbols::constantPool_fromMetaspace_signature(), &args,
CHECK_NULL);
 return JNIHandles::make_local(THREAD, (oop)method_result.get_jobject());
}

20

HotSpot JVMCI Example after

C2V_VMENTRY_NULL(jobject, getConstantPool, (JNIEnv* env, jobject, jobject object_handle))
 constantPoolHandle cp;
 JVMCIObject object = JVMCIENV->wrap(object_handle);
 if (object.is_null()) {
 JVMCI_THROW_NULL(NullPointerException);
 }
 if (JVMCIENV->isa_HotSpotResolvedJavaMethodImpl(object)) {
 cp = JVMCIENV->asMethod(object)->constMethod()->constants();
 } else if (JVMCIENV->isa_HotSpotResolvedObjectTypeImpl(object)) {
 cp = InstanceKlass::cast(JVMCIENV->asKlass(object))->constants();
 } else {
 JVMCI_THROW_MSG_NULL(IllegalArgumentException,
 err_msg("Unexpected type: %s", JVMCIENV->klass_name(object)));
 }
 assert(!cp.is_null(), "npe");

 JVMCIObject result = JVMCIENV->get_jvmci_constant_pool(cp, JVMCI_CHECK_NULL);
 return JVMCIENV->get_jobject(result);
}

21

Uses serialized representation of parsed graphs
• No bytecodes available
• Faster than parsing

Fully initialized compiler stored in image heap
Single JVMCI namespace

• Only Substrate types

Dynamic Graal compilation in native image binaries

22

Hybrid JVMCI environment
• BytecodeParser is used for Java code
• encoded graphs used for snippets and method substitutions

- Refer to types that are actually part of libgraal
Compiler must be initialized at start of isolate

• Connections between JVMCI and HotSpot must be built dynamically

Dynamic Graal compilation in libgraal

23

Snippets are stylized pieces of Java code that implement low level features
• Fast/slow allocation paths or identityHashCode for example

Parsed into a graph and then inlined to replace other nodes
• @Fold is used to inject constant values from the environment

- Field offsets or mark word values for instance

- Boxes result into a JavaConstant
• @NodeIntrinsic is used to insert a particular IR node

- Lets snippets perform low level operations

- Often takes the result of @Fold as an input

Snippets and method substitutions

24

Snippet Example: fast identityHashCode

@Snippet
static int identityHashCodeSnippet(Object x) {
 if (probability(NOT_FREQUENT_PROBABILITY, x == null)) {
 return 0;
 }

 Word mark = loadWordFromObject(x, markOffset());

 final Word biasedLock = mark.and(
 biasedLockMaskInPlace());
 if (probability(FAST_PATH_PROBABILITY,
 biasedLock.equal(WordFactory.unsigned(
 unlockedMask())))) {
 int hash = (int) mark.unsignedShiftRight(
 identityHashCodeShift()).rawValue();
 if (probability(FAST_PATH_PROBABILITY,
 hash !=
uninitializedIdentityHashCodeValue())) {
 return hash;
 }
 }

 return identityHashCode(IDENTITY_HASHCODE, x);
}

Node intrinsicNode intrinsic

Constant folding during snippet parsing

Machine-word sized value

The snippet is in class HashCodeSnippets

25

Graph is parsed normally but all @Fold operations are deferred
• NodeIntrinsic might be deferred as well

Graph is encoded and stored in the libgraal heap
• The graph may contain constant references to HotSpot JVMCI types

- Converted to unresolved types during image building
During dynamic compilation the snippet is decoded

• Fold and NodeIntrinsic are processed during decode
• Symbolic type references are resolved against HotSpot

Snippet preparation and use in libgraal

26

Like a snippet but inlined on the fly by the BytecodeParser
• Uses similar tricks to a Snippet but is often simpler
• Has to be careful about FrameStates

More problematic for libgraal because it's not a graph
• Alternate compilation mode for libgraal to encode the graph
• Alternate BytecodeParser path to inline the decoded graph

More likely to reference random JDK types
• May complicate decoding the graph

Method substitutions

27

Method substitution example: SHA crypt

 @MethodSubstitution(isStatic = false)
 static void implCompress0(Object receiver, byte[] buf, int ofs) {
 Object realReceiver = PiNode.piCastNonNull(receiver,
 HotSpotReplacementsUtil.methodHolderClass(INJECTED_INTRINSIC_CONTEXT));
 Object state = RawLoadNode.load(realReceiver, stateOffset(INJECTED_INTRINSIC_CONTEXT),
 JavaKind.Object, LocationIdentity.any());
 Word bufAddr = WordFactory.unsigned(ComputeObjectAddressNode.get(buf,
 ReplacementsUtil.getArrayBaseOffset(INJECTED_METAACCESS, JavaKind.Byte) + ofs));
 Word stateAddr = WordFactory.unsigned(ComputeObjectAddressNode.get(state,
 ReplacementsUtil.getArrayBaseOffset(INJECTED_METAACCESS, JavaKind.Int)));
 HotSpotBackend.sha5ImplCompressStub(bufAddr, stateAddr);
 }

 @Fold
 static long stateOffset(@InjectedParameter IntrinsicContext context) {
 return HotSpotReplacementsUtil.getFieldOffset(HotSpotReplacementsUtil.methodHolderClass(context),
"state");
 }

Injected HotSpot JVMCI typeAvoid use of Unsafe

Machine-word sized value

28

Total compile time for DaCapo lusearch

0

10

20

30

40

C1 C2/Graal

C2 jargraal CE libgraal CE jargraal EE libgraal EE

29

Native image GC is slower than HotSpot GC
• For most compiles it’s not an issue
• Very large graphs
• Serializes multiple compilation threads

Increased JNI overhead from JNI
• Mainly affects the final code installation step

Native image compiled Graal may be slower than fully warmed up jargraal
• Mitigated in GraalVM EE with PGO and compressed oops

Large shared library

Tradeoffs

30

Truffle runtime can use libgraal to compile Truffle methods
• Truffle runtime must always run as normal Java code
• libgraal exports a Truffle compilation entry point

- Appears as a normal Java native method

- See substratevm/ImplementingNativeMethodsInJavaWithSVM.md
• Invoked by passing JVMCI objects from jargraal to libgraal

- All compilation is performed by libgraal
• Faster start up time

Truffle partial evaluation using libgraal

31

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
0

2000

4000

6000

8000

10000

12000

Octane Box2d

Graal on HotSpot LibGraal SubstrateVM

Iteration

Ti
m

e(
m

s)

Time of each iteration running Octane Box2d
Times are average values of 10 executions
100 iterations time reduced from 58,58s to 35,83s

JarGraal LibGraal Native Image

32

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
0

1000

2000

3000

4000

5000

6000

7000

Octane Crypto

Graal on HotSpot LibGraal SubstrateVM

Iteration

Ti
m

e(
m

s)

Time of each iteration running Octane Crypto
Times are average values of 10 executions
100 iterations time reduced from 18,39s to 10,17s

JarGraal LibGraal Native Image

33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5000

10000

15000

20000

25000

30000

35000

Octane Mandreel

Graal On HotSpot LibGraal SubstrateVM

Iteration

Ti
m

e(
m

s)

Time of each iteration running Octane Mandreel
Times are average values of 10 executions
100 iterations time reduced from 47,60s to 41.6s

JarGraal LibGraal Native Image

34

Investigating multiple isolates
• Complicates monitoring and output

Completely isolate libgraal types from HotSpot runtime
• libgraal becomes completely standalone

GC tuning
Reduce library size

• Make some Graal options statically disabled

Future work

