ORACLE

GraalVM as a Static Analysis Framework

- Christian Wimmer
GraalVM Native Image Project Lead
christian.wimmer@oracle.com

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

GraalVM Native Image technology (including Substrate VM) is Early Adopter technology. It is available
only under an early adopter license and remains subject to potentially significant further changes,
compatibility testing and certification.

2 Copyright © 2020, Oracle and/or its affiliates

GraalVM.

‘-') = Javar @ruby @ python C®

!&ala%.m @ JS
/ | \ \

Native Image

. ORACLE" -~
Open|DK. n‘@dc .

Database

3 Copyright © 2020, Oracle and/or its affiliates

GraalVM Native Image: Details

Input:
- . Output:
All classes from application, .
libraries, and VM Native executable
i Ahead-of-Time

BTN Compilation Codein

Libraries — Text Section
JDIS B Image Heap in
Substrate VM Image Heap Sl ceion
Writing

lterative analysis until
fixed point is reached

4 Copyright © 2020, Oracle and/or its affiliates

] N _ & & Y 7 2
- w & 4 v 2 =
_ AROARNS 177772

Static Analysis Frameworks

Most established frameworks are independent from a compiler. But the feature list reads like a compiler:
« Soot: https://sable.github.io/soot/

- Jimple: a typed 3-address intermediate representation suitable for optimization
- Shimple: an SSA variation of Jimple

- (Call-graph construction

- Points-to analysis

« Doop: https://plast-lab.github.io/doop-pldi15-tutorial /
- A declarative framework for static analysis, centered on pointer analysis algorithms
- Points-to analysis implemented in Datalog

« Wala: http://wala.sourceforge.net/wiki/index.php/Main Page
- Interprocedural dataflow analysis (RHS solver)
- Pointer analysis and call graph construction
- SSA-based register-transfer language IR
- General framework for iterative dataflow

So why not use a compiler for static analysis? Well, at least the front-end and some high-level optimizations.

5 Copyright © 2020, Oracle and/or its affiliates

https://sable.github.io/soot/
https://plast-lab.github.io/doop-pldi15-tutorial/
http://wala.sourceforge.net/wiki/index.php/Main_Page

Using the GraalVM Compiler as a Static Analysis Framework

GraalVM compiler and the hosting Java VM provide
 Class loading (parse the class file)
 Access the bytecodes of a method (via JVMCI)
 Access to the Java type hierarchy, type checks (via JVMCI)

Bytecode parsing for points-to analysis and compilation use same intermediate representation
 Simplifies using the analysis results for optimizations

Goals of points-to analysis
* ldentify all methods reachable from a root method
« |dentify the types assigned to each field
« |dentify all instantiated types

Fixed point iteration of type flows: Types propagated from sources (allocation) to usage

6 Copyright © 2020, Oracle and/or its affiliates

o > . 9
= L \\

Example Type Flow Graph

allocate
new Point
Object f;
void foo() {
allocate();
bar();
}

Object allocate() {
f = new Point()

}

int bar() {
return f.hashCode();

}

Point.hashCode
Analysis is context insensitive:

One type state per field

7 Copyright © 2020, Oracle and/or its affiliates

Example Type Flow Graph

8

Object f;

void foo() {
allocate();
bar();

}

Object allocate() {
f = new Point()

}

int bar() {
return f.hashCode();

}

f ="abc";

Analysis is context insensitive:

One type state per field

Copyright © 2020, Oracle and/or its affiliates

[String]

Point, String]

[Point]

bar

allocate
new Point

[Point]

[Point, String]

[Point, String]

String.hashCode

Point.hashCode

Context Sensitive Analysis

So to improve analysis precision, we “just” have to make the analysis context sensitive. And there is no
shortage of papers (and entire conferences) about that.

But what nobody really tells you: A realistic improvement in precision requires a very deep context
« Java has deep call chains
« Java has deep object structures. For example, just look at java.util.HashMap

Java is messy: about every call can reach JDK methods that lazily initialize global state
« About everything can call String.format which has huge reachability
« String.format initializes global state
« Cannot have context that covers all of String formatting, so you loose all precision

We believe that a context sensitive analysis is infeasible in production. At least we tried and failed.

9 Copyright © 2020, Oracle and/or its affiliates

Region-Based Memory Management

10

https://doi.ore/101145/2754169.2754185

Safe and Efficient Hybrid Memory Management for Java

Codrut Stancu®! Christian Wimmer* Stefan Brunthaler! Per Larsen! Michael Franz!

*Oracle Labs, USA JrUniversity of California, Irvine, USA

c.stancuQuci.edu christian.wimmer@oracle.com

Abstract

Java uses automatic memory management, usually imple-
mented as a garbage-collected heap. That lifts the burden
of manually allocating and deallocating memory, but it can
incur significant runtime overhead and increase the mem-
ory footprint of applications. We propose a hybrid mem-
ory management scheme that utilizes region-based memory
management to deallocate objects automatically on region
exits. Static program analysis detects allocation sites that are
safe for region allocation, i.e., the static analysis proves that
the objects allocated at such a site are not reachable after
the region exit. A regular garbage-collected heap is used for
objects that are not region allocatable.

s.brunthaler@uci.edu perl@uci.edu franzQuci.edu

Keywords Static program analysis, region-based memory
management, garbage collection

1. Introduction

Many memory intensive applications follow a regular exe-
cution pattern that can be divided into execution phases. For
example, an application server responds to user requests; a
database performs transactions; or a compiler applies op-
timization phases during compilation of a method. These
applications allocate phase-local temporary memory that is
used only for the duration of the phase. Such coarse-grain
phases can be identified by the application developer with a

—— e o AECC s

https://doi.org/10.1145/2754169.2754185

Region-Based Memory Management

Static Analysis - \
Reachable world

: -
Points-to | generates (classes) \

analysis 4

E uses l methods |

PN L e e e e - — |

Region Y&~ © fields)| UseS_TTTEorTTT !
annotated N, Code :

——
source f /

code uses () N\ uses —|--------
Kuses L ST Region metadata

~1 Region :/ P _ /
| analysis generates—>| (region mappings |
R ! [region enter/exit |

\

Region analysis is built on
top of our static analysis

Runtime - -
|
Data Structures - | : [Garbage CollectedJ |
f Region metadata 1 Allocator It‘allocates | Heap |
uses | ! \): (Region 0 J I mmmmm e I
o R 2 egion , i
_region mapplngs] : S : l€—collects— Collector :
—_— — | & (Region 1) | L :
| region enter/exﬂ] i X | > c [
L uses_1 Region ! push/pop™ "1 S !
Manager LD i
| Manager ; S\y(_Regonn__J
\)

M Copyright © 2020, Oracle and/or its affiliates

Semantic Models

12

https://doi.org/10.1145/3377555.3577885

Scalable Pointer Analysis of Data Structures
using Semantic Models

Pratik Fegade
Oracle Labs and Carnegie Mellon University, USA
ppf@cs.cmu.edu

Abstract

Pointer analysis is widely used as a base for different kinds
of static analyses and compiler optimizations. Designing a
scalable pointer analysis with acceptable precision for use
in production compilers is still an open question. Modern
object oriented languages like Java and Scala promote ab-
stractions and code reuse, both of which make it difficult
to achieve precision. Collection data structures are an ex-
ample of a pervasively used component in such languages.
But analyzing collection implementations with full context
sensitivity leads to prohibitively long analysis times.

We use semantic models to reduce the complex internal
implementation of, e.g., a collection to a small and concise
model. Analyzing the model with context sensitivity leads
to precise results with only a modest increase in analysis

Christian Wimmer
Oracle Labs, USA
christian.wimmer@oracle.com

1 Introduction

Whole program pointer analysis [48] has applications in a va-
riety of different compiler analyses and optimizations. It has
been used for autoparallelization [15, 44], security analysis of
applications [29], bugfinding [20], high level synthesis [46]
among other applications. Significant amount of work has
been done in improving the precision and/or scalability of
pointer analysis [18, 28, 51, 58]. Despite this, precise pointer
analysis remains expensive and often not scalable.
Repeated analysis of methods under different calling con-
texts dominates execution time for top-down pointer anal-
ysis [59]. Commonly used components, as well as a high
degree of abstractions in the form of pointer indirections
thus lead to either high analysis costs or low analysis preci-
sion.

https://doi.org/10.1145/3377555.3377885

! a y
& ¥ 4 F&s
I - 7 W # 4 4 Yy 7 y
Y - . ' P& Yy ye

Semantic Models

Semantic models 'V HashMap Model.put (K k, V v) {:

« Simpler to analyze : this.allKeys = k;
: § this.allvalues = v;
BB A R _ i return this.allValues;
« But don't model all behavior ! :
models ana]yzed iV _HashMap.put (K k, V v) {

INode n = new Node (k, v); |
// Insert node in array

Analyze both, but with

different contexts

13 Copyright © 2020, Oracle and/or its affiliates

! 3 i " ¥ 4 y 7 =
- w & 4 v 2 =
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.-"' B

Semantic Models: Call Resolution

./v\ HashMap]
(2 <

HashMap_Model]

2. Map map = new HashMap<> () ; Context: <Empty>

HashMap.get (Object k) {

g 7 Key k7 ;
E:::>§ 8: Value v = map.get (k) ; : } return ..;

(Context: <fun@8>
HashMap Model.get (Object k) {

L» return ..;
}

14 Copyright © 2020, Oracle and/or its affiliates

Cost: Normalized Total Analysis Time

@ Context insensitive
@ Context sensitive

Lower is better - faster analysis _
Semantic Models

Timed Out 7547 169.68 81.96 8.96 82.75

Normalized analysis time
O =~ N W ~ OO0 N

Q S 2 O O o o) N S O Q
e > > O O 28 \O NN % O NS
A\ ((\\o & N (5\ D

15 Copyright © 2020, Oracle and/or its affiliates

Current GraalVM Static Analysis Projects

Improve static analysis memory footprint and time
« |dea: “saturate” type states with many types to the declared type
« How much will it reduce analysis precision?

Inline methods before static analysis
« Similar benefits (and costs) as context sensitive analysis
* But when done only for small methods, cost should not increase
« Compiler: Inlining of small methods reduces compilation time and compiled code size

Use static analysis results to initialize classes early (at native image build time)
« When static initializer does not depend on external state
» Also interesting to find cycles in class initializers

16 Copyright © 2020, Oracle and/or its affiliates

One Compiler, Many Configurations

Executes

GraalVM
Compiler (7

(D Compiler configured for just-in-time compilation inside the Java HotSpot VM

17 Copyright © 2020, Oracle and/or its affiliates

One Compiler, Many Configurations

Executes

(D Compiler configured for just-in-time compilation inside the Java HotSpot VM
@ Compiler also used for just-in-time compilation of JavaScript code

18 Copyright © 2020, Oracle and/or its affiliates

One Compiler, Many Configurations

Executes

Builds
Yc_)ur_
GraalVM GraalVM Application
Compiler (2 Compiler (3

(D Compiler configured for just-in-time compilation inside the Java HotSpot VM
(@ Compiler configured for static points-to analysis
(® Compiler configured for ahead-of-time compilation

GraalVM
Compiler (7

19 Copyright © 2020, Oracle and/or its affiliates

One Compiler, Many Configurations

Executes Builds

GraalVM GraalVM GraalVM
Compiler (7 Compiler (2 Compiler (3

GraalVM
Compiler (@)

(D Compiler configured for just-in-time compilation inside the Java HotSpot VM
(@ Compiler configured for static points-to analysis

(® Compiler configured for ahead-of-time compilation

(@ Compiler configured for just-in-time compilation inside a Native Image

20 Copyright © 2020, Oracle and/or its affiliates

Thank you

21 Copyright © 2020, Oracle and/or its affiliates

ORACLE

