
GraalVM Native Image Project Lead

christian.wimmer@oracle.com

Christian Wimmer

GraalVM as a Static Analysis Framework

Copyright © 2020, Oracle and/or its affiliates2

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

GraalVM Native Image technology (including Substrate VM) is Early Adopter technology. It is available
only under an early adopter license and remains subject to potentially significant further changes,
compatibility testing and certification.

Safe Harbor Statement

Native Image

Copyright © 2020, Oracle and/or its affiliates3

Copyright © 2020, Oracle and/or its affiliates4

GraalVM Native Image: Details

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

Copyright © 2020, Oracle and/or its affiliates5

Most established frameworks are independent from a compiler. But the feature list reads like a compiler:

• Soot: https://sable.github.io/soot/
- Jimple: a typed 3-address intermediate representation suitable for optimization

- Shimple: an SSA variation of Jimple

- Call-graph construction

- Points-to analysis

• Doop: https://plast-lab.github.io/doop-pldi15-tutorial/
- A declarative framework for static analysis, centered on pointer analysis algorithms

- Points-to analysis implemented in Datalog

• Wala: http://wala.sourceforge.net/wiki/index.php/Main_Page
- Interprocedural dataflow analysis (RHS solver)

- Pointer analysis and call graph construction

- SSA-based register-transfer language IR

- General framework for iterative dataflow

So why not use a compiler for static analysis? Well, at least the front-end and some high-level optimizations.

Static Analysis Frameworks

https://sable.github.io/soot/
https://plast-lab.github.io/doop-pldi15-tutorial/
http://wala.sourceforge.net/wiki/index.php/Main_Page

6

GraalVM compiler and the hosting Java VM provide

• Class loading (parse the class file)

• Access the bytecodes of a method (via JVMCI)

• Access to the Java type hierarchy, type checks (via JVMCI)

Bytecode parsing for points-to analysis and compilation use same intermediate representation

• Simplifies using the analysis results for optimizations

Goals of points-to analysis

• Identify all methods reachable from a root method

• Identify the types assigned to each field

• Identify all instantiated types

Fixed point iteration of type flows: Types propagated from sources (allocation) to usage

Using the GraalVM Compiler as a Static Analysis Framework

Copyright © 2020, Oracle and/or its affiliates

bar

7

Example Type Flow Graph

Object f;

void foo() {
allocate();
bar();

}

Object allocate() {
f = new Point()

}

int bar() {
return f.hashCode();

}

putField f

new Point

getField f

obj vcall hashCode

this

allocate

Point.hashCode

[Point]

[Point]

[Point]

f

[Point]

[Point]

Analysis is context insensitive:
One type state per field

Copyright © 2020, Oracle and/or its affiliates

bar

8

Example Type Flow Graph

putField f

new Point

getField f

obj vcall hashCode

this

allocate

Point.hashCode

[Point]

[Point]

[Point, String]

f

[String]

[Point, String]

[Point, String]

this

String.hashCode

f = "abc";
Object f;

void foo() {
allocate();
bar();

}

Object allocate() {
f = new Point()

}

int bar() {
return f.hashCode();

}

Analysis is context insensitive:
One type state per field

Copyright © 2020, Oracle and/or its affiliates

Copyright © 2020, Oracle and/or its affiliates9

So to improve analysis precision, we “just” have to make the analysis context sensitive. And there is no
shortage of papers (and entire conferences) about that.

But what nobody really tells you: A realistic improvement in precision requires a very deep context

• Java has deep call chains

• Java has deep object structures. For example, just look at java.util.HashMap

Java is messy: about every call can reach JDK methods that lazily initialize global state

• About everything can call String.format which has huge reachability

• String.format initializes global state

• Cannot have context that covers all of String formatting, so you loose all precision

We believe that a context sensitive analysis is infeasible in production. At least we tried and failed.

Context Sensitive Analysis

10

Region-Based Memory Management

https://doi.org/10.1145/2754169.2754185

Copyright © 2020, Oracle and/or its affiliates

https://doi.org/10.1145/2754169.2754185

Copyright © 2020, Oracle and/or its affiliates11

Region-Based Memory Management

Static Analysis

Runtime
Data Structures

Region analysis is built on
top of our static analysis

12

Semantic Models

https://doi.org/10.1145/3377555.3377885

Copyright © 2020, Oracle and/or its affiliates

https://doi.org/10.1145/3377555.3377885

V HashMap.put(K k, V v) {

Node n = new Node(k, v);

.. // Insert node in array

}

V HashMap_Model.put(K k, V v) {

this.allKeys = k;

this.allValues = v;

return this.allValues;

}

Copyright © 2020, Oracle and/or its affiliates13

Semantic models

• Simpler to analyze

• Model API behavior

• But don’t model all behavior

Internal methods skipped if only semantic
models analyzed

Semantic Models

Analyze both, but with
different contexts

Copyright © 2020, Oracle and/or its affiliates14

Semantic Models: Call Resolution

map
HashMap

HashMap_Model

Context: <Empty>

HashMap.get(Object k) {

return …;

}

Context: <fun@8>
HashMap_Model.get(Object k) {

return …;

}

1: fun() {

2: Map map = new HashMap<>();

...

7: Key k;

8: Value v = map.get(k);

9: }

Copyright © 2020, Oracle and/or its affiliates15

Cost: Normalized Total Analysis Time

Context insensitive
Context sensitive
Semantic Models

N
o

rm
a

liz
e

d
 a

n
a

ly
si

s
ti

m
e

Lower is better  faster analysis

Copyright © 2020, Oracle and/or its affiliates16

Improve static analysis memory footprint and time

• Idea: “saturate” type states with many types to the declared type

• How much will it reduce analysis precision?

Inline methods before static analysis

• Similar benefits (and costs) as context sensitive analysis

• But when done only for small methods, cost should not increase

• Compiler: Inlining of small methods reduces compilation time and compiled code size

Use static analysis results to initialize classes early (at native image build time)

• When static initializer does not depend on external state

• Also interesting to find cycles in class initializers

Current GraalVM Static Analysis Projects

Copyright © 2020, Oracle and/or its affiliates17

One Compiler, Many Configurations

Java HotSpot VM

Executes

Your Application

JIT Compilation

1

1 Compiler configured for just-in-time compilation inside the Java HotSpot VM

GraalVM
Compiler

App.jar

Copyright © 2020, Oracle and/or its affiliates18

One Compiler, Many Configurations

Java HotSpot VM

Executes

Your Application

JIT Compilation

1

1 Compiler configured for just-in-time compilation inside the Java HotSpot VM
2 Compiler also used for just-in-time compilation of JavaScript code

GraalVM
Compiler

GraalJSApp.jar

2

Copyright © 2020, Oracle and/or its affiliates19

One Compiler, Many Configurations

Java HotSpot VM

Executes

Native Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native Image

Builds

1

1 Compiler configured for just-in-time compilation inside the Java HotSpot VM
2 Compiler configured for static points-to analysis
3 Compiler configured for ahead-of-time compilation

GraalVM
Compiler 2

GraalVM
Compiler 3

GraalVM
Compiler

Your
Application

Copyright © 2020, Oracle and/or its affiliates20

One Compiler, Many Configurations

Java HotSpot VM

Executes

Native Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native Image

JIT Compilation

GraalJSBuilds

1

1 Compiler configured for just-in-time compilation inside the Java HotSpot VM
2 Compiler configured for static points-to analysis
3 Compiler configured for ahead-of-time compilation
4 Compiler configured for just-in-time compilation inside a Native Image

GraalVM
Compiler 2

GraalVM
Compiler 3

GraalVM
Compiler

4

GraalVM
Compiler

Copyright © 2020, Oracle and/or its affiliates21

Thank you

