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Overview

e Inlining is an important optimization
e Machine Learning could help
o Evolutionary techniques may be applicable



Inlining &
Heuristics




int add(int a, int b) {
a b:

void foo() { void foo() {
int x = add(2, 3): int X =2 + 3
int y = add(4, 9); inty =4+ 9;
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Inlining

o Replacing callsites with bodies of callees
o Enables other optimizations
o Many interdependent decisions

o “How” is easy. “When” is hard.
o Too much is bad, too little is not optimal.



How do we decide
when to inline?
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Current Inlining Policy

e Manually constructed and tuned
o Often tuned for a specific benchmark
e Same across environments and workloads

e Graal’s current policy
o Simple if-statements
o Gather some data about the decision point, run it
through simple flow
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Incremental Inlining Algorithm

¢ Online inlining algorithm
o lIdentifies and inlines clusters of callsites
o Alternates between inlining and optimizations

Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas
Wirthinger. 2019. An optimization-driven incremental inline substitution algorithm
for just-in-time compilers. In Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO 2019).
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Machine Learning

ML helps us make decisions.
Can it tell us when to inline?
Doug Simon et al. say yes.
(about 10% speedup)

Specifically - Evolutionary
Algorithms.

Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. 2013. Automatic construction of inlining
heuristics using machine learning. In Proceedings of the 2013 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO) (CGO '13).
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1

Evaluation

Evaluate all the
organisms in the

current population.

The Evolution Process

2

Selection

Select the fittest
organisms.

3

Crossover

Combine parent
organisms to
produce children

4

Mutation

With some
probability, modify
the children.

S5

Repeat!

As the new
generation is
created, repeat the
process until
convergence or a
maximum limit.



Neuroevolution of
Augmenting Topologies
(NEAT)
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NEAT

o Applying evolution to Neural Networks
o Neuroevolution algorithm developed by Kenneth O. Stanley in 2002

i Genn 34 species 14 genome 14 (37%)
o Can evolve structure and weights St A svacies. Lisaanons 11 23
”n AN YIRS W (S 75710

Kenneth Owen Stanley. 2004. Efficient Evolution of Neural Networks
Through Complexification. Ph.D. Dissertation. The University of Texas at
Austin.
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Applying NEAT
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NEAT for the Inlining Problem

e Inlining requires making decisions using a heuristic

e Neural Networks can be used as a heuristic

o Input is the same data the current policy receives
o Outputis YES/NO

o They cannot be trained for inlining using traditional

Gradient Descent
o No way of knowing the correct decisions

e A heuristic can be evolved
o Evaluating an organism means getting running time on
benchmarks



Thank you.
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Result of NEAT

o When NEAT ends, it gives you the best organism of
the last generation

o “Bake” this into the compiler, totally offline

o Can make different network/policies for different
environments
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Benefits of NEAT for Inlining

o Automatic construction of heuristic without expert
work

o Easy to customize for environments, workloads
e Done offline
o Resultis a single heuristic
e Doug Simon et al. showed improvements over
default algorithm in MaxineVM (C1X)
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Graal Compiler

Phase x

Inlining Phase
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More Phases...
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In More Detail

NEAT
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Libraries

Neuroph is used for Neural Network support.
There is a NEAT for Neuroph implementation.

Why Neuroph? Easy to transfer.

- Neural Networks -
/‘ ‘ NEAT r ! Graal \ . /.

. N euro p h Runtime Results N euro p h

Java Neural Network Framework Java Neural Network Framework
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Running

e Aurora/Mesos
e Running on dedicated JVM cluster machine
e No interference
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Evolution Hyperparameters

Population Size

Number of Generations (or Termination Condition)
Mutation rates

Selection

Speciation
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Other Knobs & Dials

e What benchmarks to run
o How to evaluate a neural network

e Warmup run count
e How to turn neural net output into YES/NO

o Threshold
o  Probability
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Output

o Fitness of every organism evaluated

o Generation Statistics
o Best Organism
o No. of Species

o Save each generation
o Can resume from any point later
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The Experiment

e Population Size =12
e Warmups =12
e Benchmarks

O

o O O O O O O

"dacapo:lusearch"
"dacapo:jython"
"dacapo:pmd"
"dacapo:avrora"
"dacapo:luindex"
"dacapo:sunflow"
"dacapo:xalan”

"dacapo:fop"
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The Outcome

Ran for ~271 Generations before Kkill

Every Organisim Evaluates Best Organism of Each Generation

1.00E-03
1.00E-03
9.00E-04
. 7.50E-04 -
g g
2 3
°
N 5 8.00E04
[}
g 5
£ 5.00E-04 <
3 ©
3 S 7.00E-04
j53 [} -
a2 P’y
4 3
-
[y
2.50E-04 6.00E-04
5.00E-04
0.00E+00

Generation



L

The Secondary Experiment

Something Faster.
Optimize for only a single benchmark, reduce warm up runs.
Only Benchmark = dacapo:pmd

Why? Demonstrated variance between policies
Warmups = 6
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The Secondary Outcome

Ran for 1000 Generations

Every Organism Evaluated
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What Happened?

¢ No significant improvements over the generations

o Theory: Maybe inlining policies don’t matter?
o  Unlikely, running these benchmarks with varying policies led to
large differences in running time
o E.g. for dacapo:pmd —
m neverinline - 910ms
m always inline - 1515ms
m default graal - 301ms

o Theory: Search is not wide enough
o Mutation rate was manually increased over default
o Could use further experimentation
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What Happened?

o Theory: Network Sensitivity
o  Generally, near the beginning the networks do not seem to be
sensitive to inputs, thus essentially always being always-inline or
never-inline
o Investigate input normalization, mutation rates, binarization

o Theory: NEAT isn’t suited for this

o Doug Simon et al. says otherwise
o The other theories are credible enough to merit further
investigation before this

e Theory: Implementation Bugs
o NEAT program is able to solve other problems
o  Further testing
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Future Work & Potential Improvements
o Workload Testing

o Create/Use benchmark that models different Twitter workloads

o Experimental
o  Mutation
o Binarization
o Input normalization
o Testing
o Parallelism
o Evaluate organisms simultaneously

o Other Applications

o Autovectorization
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Applicability

e Heuristics/Policies are everywhere

e In a compiler alone,
o Instruction selection
o Register allocation
o Instruction scheduling
o  Software pipelining

e NEAT could help
o Investing in this work could mean returns in many

different areas
o Anywhere decisions need to be made using a policy
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Addendum: Reinforcement Learning

e RL used for Go, Chess, Robotics, Chemistry

o Agent, Environment, Reward

e Network is Agent, Benchmark is Environment,
Running Time is Reward

e RL Literature/Techniques may be applicable to

Inlining & other optimizations

o Q Learning
o  Actor-Critic Model Agent
o Deep Deterministic Policy Gradient

Action Observation,
Reward

Environment




