

Experimenting with Neuroevolution for Graal Inlining Heuristics

Makarand Parigi

Twitter VM Team Intern Summer 2019 University of Michigan Computer Science Senior

@MakarandParigi parigim@umich.edu

Overview

- Inlining is an important optimization
- Machine Learning could help
- Evolutionary techniques may be applicable

Inlining & Heuristics

public int add(int a, int b) { return a + b; }

Inlining

- Replacing callsites with bodies of callees
- Enables other optimizations
- Many interdependent decisions
- "How" is easy. "When" is hard.
 - Too much is bad, too little is not optimal.

DON"

INLINE

INLINE

How do we decide when to inline?

Current Inlining Policy

- Manually constructed and tuned
- Often tuned for a specific benchmark
- Same across environments and workloads
- Graal's current policy
 - Simple if-statements
 - Gather some data about the decision point, run it through simple flow

Incremental Inlining Algorithm

- Online inlining algorithm
- Identifies and inlines clusters of callsites
- Alternates between inlining and optimizations

Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Würthinger. 2019. An optimization-driven incremental inline substitution algorithm for just-in-time compilers. In *Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO 2019)*.

Machine Learning

ML helps us make decisions. Can it tell us when to inline? Doug Simon et al. say yes. (about 10% speedup)

Specifically - Evolutionary Algorithms.

Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. 2013. Automatic construction of inlining heuristics using machine learning. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) (CGO '13).

The Evolution Process

maximum limit.

Neuroevolution of Augmenting Topologies (NEAT)

NEAT

- Applying evolution to Neural Networks
- Neuroevolution algorithm developed by Kenneth O. Stanley in 2002
- Can evolve structure and weights

Kenneth Owen Stanley. 2004. Efficient Evolution of Neural Networks Through Complexification. Ph.D. Dissertation. The University of Texas at Austin.

NEAT for the Inlining Problem

- Inlining requires making decisions using a heuristic
- Neural Networks can be used as a heuristic
 - Input is the same data the current policy receives
 - Output is YES/NO
- They cannot be trained for inlining using traditional Gradient Descent
 - No way of knowing the correct decisions
- A heuristic can be evolved
- Evaluating an organism means getting running time on benchmarks

Thank you.

Result of NEAT

- When NEAT ends, it gives you the best organism of the last generation
- "Bake" this into the compiler, totally offline
- Can make different network/policies for different environments

Benefits of NEAT for Inlining

- Automatic construction of heuristic without expert work
- Easy to customize for environments, workloads
- Done offline
 - Result is a single heuristic
- Doug Simon et al. showed improvements over default algorithm in MaxineVM (C1X)

In More Detail

Libraries

Neuroph is used for Neural Network support. There is a NEAT for Neuroph implementation.

Why Neuroph? Easy to transfer.

Running

- Aurora/Mesos
- Running on dedicated JVM cluster machine
- No interference

Evolution Hyperparameters

- Population Size
- Number of Generations (or Termination Condition)
- Mutation rates
- Selection
- Speciation

Other Knobs & Dials

- What benchmarks to run
 - How to evaluate a neural network
- Warmup run count
- How to turn neural net output into YES/NO
 - Threshold
 - Probability

Output

- Fitness of every organism evaluated
- Generation Statistics
 - Best Organism
 - $\circ \quad \text{No. of Species} \quad$
- Save each generation
 - Can resume from any point later

Results

The Experiment

- Population Size = 12
- Warmups = 12

• Benchmarks

- "dacapo:lusearch"
- "dacapo:jython"
- "dacapo:pmd"
- "dacapo:avrora"
- "dacapo:luindex"
- "dacapo:sunflow"
- "dacapo:xalan"
- "dacapo:fop"

The Outcome

Ran for ~271 Generations before kill

0.00E+00 -

The Secondary Experiment

Something Faster.

Optimize for only a single benchmark, reduce warm up runs.

Only Benchmark = dacapo:pmd Why? Demonstrated variance between policies Warmups = 6

The Secondary Outcome

Ran for 1000 Generations

What Happened?

- No significant improvements over the generations
- Theory: Maybe inlining policies don't matter?
 - Unlikely, running these benchmarks with varying policies led to large differences in running time
 - \circ E.g. for dacapo:pmd
 - never inline 910ms
 - always inline 1515ms
 - default graal 301ms
- Theory: Search is not wide enough
 - Mutation rate was manually increased over default
 - Could use further experimentation

What Happened?

Theory: Network Sensitivity

- Generally, near the beginning the networks do not seem to be sensitive to inputs, thus essentially always being always-inline or never-inline
- Investigate input normalization, mutation rates, binarization

• Theory: NEAT isn't suited for this

- Doug Simon et al. says otherwise
- The other theories are credible enough to merit further investigation before this

Theory: Implementation Bugs

- NEAT program is able to solve other problems
- Further testing

Future Work & Potential Improvements

- Workload Testing
 - Create/Use benchmark that models different Twitter workloads
- Experimental
 - Mutation
 - Binarization
 - Input normalization
 - Testing
- Parallelism
 - Evaluate organisms simultaneously
- Other Applications
 - Autovectorization

Applicability

- Heuristics/Policies are everywhere
- In a compiler alone,
 - Instruction selection
 - Register allocation
 - Instruction scheduling
 - Software pipelining
- NEAT could help
- Investing in this work could mean returns in many different areas
 - Anywhere decisions need to be made using a policy

Addendum: Reinforcement Learning

- RL used for Go, Chess, Robotics, Chemistry
- Agent, Environment, Reward
- Network is Agent, Benchmark is Environment, Running Time is Reward
- RL Literature/Techniques may be applicable to Inlining & other optimizations
 - Q Learning
 - Actor-Critic Model
 - Deep Deterministic Policy Gradient

