
Experimenting with 
Neuroevolution for 
Graal Inlining Heuristics



@MakarandParigi
parigim@umich.edu

Makarand
Parigi
Twitter VM Team Intern Summer 2019
University of Michigan Computer Science Senior



Overview
● Inlining is an important optimization
● Machine Learning could help
● Evolutionary techniques may be applicable



Inlining &
Heuristics





Inlining
● Replacing callsites with bodies of callees
● Enables other optimizations
● Many interdependent decisions
● “How” is easy. “When” is hard.

○ Too much is bad, too little is not optimal.



How do we decide 
when to inline?



Current Inlining Policy
● Manually constructed and tuned
● Often tuned for a specific benchmark
● Same across environments and workloads
● Graal’s current policy

○ Simple if-statements
○ Gather some data about the decision point, run it 

through simple flow



Incremental Inlining Algorithm
● Online inlining algorithm
● Identifies and inlines clusters of callsites
● Alternates between inlining and optimizations

Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas 
Würthinger. 2019. An optimization-driven incremental inline substitution algorithm 
for just-in-time compilers. In Proceedings of the 2019 IEEE/ACM International 
Symposium on Code Generation and Optimization (CGO 2019).



Machine Learning
ML helps us make decisions.
Can it tell us when to inline?
Doug Simon et al. say yes.
(about 10% speedup)

Specifically - Evolutionary 
Algorithms.

Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. 2013. Automatic construction of inlining 
heuristics using machine learning. In Proceedings of the 2013 IEEE/ACM International Symposium on Code 
Generation and Optimization (CGO) (CGO '13).



1 2 3 4 5
Evaluation Selection Crossover Mutation Repeat!

Evaluate all the 
organisms in the 
current population.

Select the fittest 
organisms.

Combine parent 
organisms to 
produce children

With some 
probability, modify 
the children.

As the new 
generation is 
created, repeat the 
process until 
convergence or a 
maximum limit.

The Evolution Process



Neuroevolution of 
Augmenting Topologies 
(NEAT)



NEAT
● Applying evolution to Neural Networks
● Neuroevolution algorithm developed by Kenneth O. Stanley in 2002
● Can evolve structure and weights

Kenneth Owen Stanley. 2004. Efficient Evolution of Neural Networks 
Through Complexification. Ph.D. Dissertation. The University of Texas at 
Austin. 





Applying NEAT



NEAT for the Inlining Problem
● Inlining requires making decisions using a heuristic
● Neural Networks can be used as a heuristic

○ Input is the same data the current policy receives
○ Output is YES/NO

● They cannot be trained for inlining using traditional 
Gradient Descent

○ No way of knowing the correct decisions
● A heuristic can be evolved
● Evaluating an organism means getting running time on 

benchmarks



Thank you.



Result of NEAT
● When NEAT ends, it gives you the best organism of 

the last generation
● “Bake” this into the compiler, totally offline
● Can make different network/policies for different 

environments



Benefits of NEAT for Inlining
● Automatic construction of heuristic without expert 

work
● Easy to customize for environments, workloads
● Done offline

○ Result is a single heuristic
● Doug Simon et al. showed improvements over 

default algorithm in MaxineVM (C1X)





In More Detail



Libraries
Neuroph is used for Neural Network support.
There is a NEAT for Neuroph implementation.

Why Neuroph? Easy to transfer.



Running
● Aurora/Mesos
● Running on dedicated JVM cluster machine
● No interference



Evolution Hyperparameters
● Population Size
● Number of Generations (or Termination Condition)
● Mutation rates
● Selection
● Speciation



Other Knobs & Dials
● What benchmarks to run

○ How to evaluate a neural network
● Warmup run count
● How to turn neural net output into YES/NO

○ Threshold
○ Probability



Output
● Fitness of every organism evaluated
● Generation Statistics

○ Best Organism
○ No. of Species

● Save each generation
○ Can resume from any point later



Results



The Experiment
● Population Size = 12
● Warmups = 12
● Benchmarks

○ "dacapo:lusearch"

○ "dacapo:jython"

○ "dacapo:pmd"

○ "dacapo:avrora"

○ "dacapo:luindex"

○ "dacapo:sunflow"

○ "dacapo:xalan"

○ "dacapo:fop"



The Outcome
Ran for ~271 Generations before kill



The Secondary Experiment
Something Faster.

Optimize for only a single benchmark, reduce warm up runs.

Only Benchmark = dacapo:pmd
Why? Demonstrated variance between policies

Warmups = 6



The Secondary Outcome
Ran for 1000 Generations



What Happened?
● No significant improvements over the generations
● Theory: Maybe inlining policies don’t matter?

○ Unlikely, running these benchmarks with varying policies led to 
large differences in running time

○ E.g. for dacapo:pmd –
■ never inline - 910ms
■ always inline - 1515ms
■ default graal - 301ms

● Theory: Search is not wide enough
○ Mutation rate was manually increased over default
○ Could use further experimentation



What Happened?
● Theory: Network Sensitivity

○ Generally, near the beginning the networks do not seem to be 
sensitive to inputs, thus essentially always being always-inline or 
never-inline

○ Investigate input normalization, mutation rates, binarization
● Theory: NEAT isn’t suited for this

○ Doug Simon et al. says otherwise
○ The other theories are credible enough to merit further 

investigation before this
● Theory: Implementation Bugs

○ NEAT program is able to solve other problems
○ Further testing



Future Work & Potential Improvements
● Workload Testing

○ Create/Use benchmark that models different Twitter workloads
● Experimental

○ Mutation
○ Binarization
○ Input normalization
○ Testing

● Parallelism
○ Evaluate organisms simultaneously

● Other Applications
○ Autovectorization



Applicability
● Heuristics/Policies are everywhere
● In a compiler alone,

○ Instruction selection
○ Register allocation
○ Instruction scheduling
○ Software pipelining

● NEAT could help
● Investing in this work could mean returns in many 

different areas
○ Anywhere decisions need to be made using a policy



Addendum: Reinforcement Learning
● RL used for Go, Chess, Robotics, Chemistry
● Agent, Environment, Reward
● Network is Agent, Benchmark is Environment, 

Running Time is Reward
● RL Literature/Techniques may be applicable to 

Inlining & other optimizations
○ Q Learning
○ Actor-Critic Model
○ Deep Deterministic Policy Gradient


