
How to Statically Compile a Serverless
Application to Survive the Biggest Bursty E-

Commerce Data Traffic in the World
Ziyi Lin, Yifei Zhang, Wei Kuai, Sanhong Li

Alibaba Group

1

Tianxiao Gu
tianxiao.gu@alibaba-inc.com
Alibaba Group, Sunnyvale, CA

2

Motivations

• Cold startup problem
• Serverless services require fast scaling up for bursty requests
• Java applications start up slowly in JVM

• Security problem
• Java programs are distributed in bytecode and bytecode obfuscation is weak
• JVM features such as dynamic class loading can be abused by malicious code

• High cost of developing and maintaining projects for multiple
programming languages
• For example, RocketMQ client SDK has various language implementations

3

Static Compilation of Java Applications

static compiler
(native-image)

Java
Application

Native
Executable

Native
Shared
Library

• Benefits:
• Used as foreign language
• More secured

• Benefits:
• Start up faster
• More secured

4

Java
Library

Native Image Generator and Substrate VM

GraalVM Native Image allows you to ahead-of-time compile Java code to a
standalone executable, called a native image. This executable includes the
application classes, classes from its dependencies, runtime library classes from JDK
and statically linked native code from JDK. It does not run on the Java VM, but
includes necessary components like memory management and thread scheduling
from a different virtual machine, called “Substrate VM”. Substrate VM is the name
for the runtime components (like the deoptimizer, garbage collector, thread
scheduling etc.). The resulting program has faster startup time and lower runtime
memory overhead compared to a Java VM.

https://www.graalvm.org/docs/reference-manual/native-image/ 5

$ native-image –cp .. Main
$ ls
main Use SVM to refer to the static compilation technique in this talk

https://www.graalvm.org/docs/reference-manual/native-image/

Simple Demo

10 4

771

129

0
100
200
300
400
500
600
700
800
900

Netty Server Hello Word

St
ar

tu
p

Ti
m

e
(m

s)

SVM HotSpot VM

Looks perfect for the cold startup problem! 6

Concerns in Practice

• Can SVM scale to large real-world applications?Scalability

• How much effort do we need to run a JVM-based application in SVM?
Adaptation
Difficulty

• Will the SVM-based application run as stable as the JVM-based one?Stability

• What startup time can we gain after static compilation? Is it worth the effort?
• Is it possible to gain fast startup without sacrificing too much peak performance?Performance

7

Evaluation

Hardware
• Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz
• 512 GB memory
• 1 TB SSD

Software
• AliOS 7.2 (Paladin)
• OpenJDK 1.8.0-222
• GraalVM CE 19.2.0

8

Evaluation (cont.)

Subjects
• Three Sofa-boot Applications named Sofa-Small, Sofa-Mid, and Sofa-Large in this talk

• Built on the Sofa-boot framework, Tomcat, Netty, Hessian and many other Ant Financial’s middleware
• Big enough for SVM: 33 MB, 56 MB and 123 MB, respectively

• Each application is packed into a fat JAR, including all libraries

Steps
• Statically compile the application using SVM
• Run and diagnose the binary in testing environment before deploying in production environment

Brief Results of Sofa-Large
• Costed 25 man-months
• Deployed in Alibaba Group’s production environment
• Used in Double 11 (Single’s Day) online shopping festival, 2019

9

Scalability

• Build time increases significantly
• Why do we care about build time?

• Quickly verify results and debug at
develop time
• Promptly response to system failures

and user actions in production

• Current build time is unacceptable
for large applications in Alibaba

86

742

4,436

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

33 (Sofa-Small) 56 (Sofa-Mid) 123 (Sofa-Large)

Ti
m

e
(s

)

Application Size(MB)

Average Build Time

10

Type Flow Analysis is the Most Expensive

• Sofa-Large: a 123 MB fat JAR
• 120 GB memory, 3,724 seconds

Time Distribution

typeflow objects features
other analysis clinit other universe

parse inline compile
other compile image write

others

...
[sofabootapplication:80081] (typeflow): 2,907,607.83 ms
[sofabootapplication:80081] (objects): 341,685.73 ms
[sofabootapplication:80081] (features): 140,063.05 ms
[sofabootapplication:80081] analysis: 3,455,448.55 ms
[sofabootapplication:80081] (clinit): 21,791.25 ms
[sofabootapplication:80081] universe: 38,116.97 ms
[sofabootapplication:80081] (parse): 11,899.39 ms
[sofabootapplication:80081] (inline): 14,506.99 ms
[sofabootapplication:80081] (compile): 44,150.99 ms
[sofabootapplication:80081] compile: 100,575.20 ms
[sofabootapplication:80081] image: 59,238.25 ms
[sofabootapplication:80081] write: 6,632.67 ms
[sofabootapplication:80081] [total]: 3,723,600.94 ms 11

Native Image Generator — Overview

Input Program

Type Flow Analysis

Reachable Types/Fields/Methods

Initialization/Compilation

Relocatable ELF (.o)

Linker (ld)

Native Image (.so or .exe)

Target CodeImage Objects

Image Builder

Type Profile

Collect reachable methods

12

Synthesize type profile for
later optimizations

Fast Analysis

• Use Class Hierarchy Analysis (CHA) to determine the type profile

Input Program

CHA Fast Analysis

Reachable Types/Fields/Methods

Initialization/Compilation

Relocatable ELF (.o)

Linker (ld)

.so or .exe

Target CodeImage Objects

Image Builder

Type Profile
Imprecise type

profile
More reachable

methods

14

Fast Analysis: Results

0

500

1,000

1,500

2,000

2,500

3,000

3,500

typeflow objects features other
analysis

clinit other
universe

parse inline compile other
compile

image write other

Built (Phase) Time (s)

Default Fast 16

• 20 GB memory, 721 seconds
...
[sofabootapplication:86573] (typeflow): 36,519.58 ms
[sofabootapplication:86573] (objects): 245,250.18 ms
[sofabootapplication:86573] (features): 123,698.35 ms
[sofabootapplication:86573] analysis: 429,472.53 ms
[sofabootapplication:86573] (clinit): 19,532.98 ms
[sofabootapplication:86573] universe: 33,784.94 ms
[sofabootapplication:86573] (parse): 10,232.66 ms
[sofabootapplication:86573] (inline): 23,287.25 ms
[sofabootapplication:86573] (compile): 60,698.25 ms
[sofabootapplication:86573] compile: 132,254.05 ms
[sofabootapplication:86573] image: 59,906.82 ms
[sofabootapplication:86573] write: 6,222.89 ms
[sofabootapplication:86573] [total]: 720,884.32 ms

Fast Analysis: Summary

• Pros:
• Fast for debugging large applications

• Cons:
• Not fast for small programs because more methods are included
• Unavoidable runtime performance degradation due to imprecise analysis

results

• The correctness is still under validation
• So far so good
• Still only deployed in testing environment

17

Adaptation Difficulty

*RDR: Reflection/Dynamic proxy/Resources

Configure
RDR*

Wrap
API

JAR
.exe

Determine
build-time
initialized

classes
Debug

Fix

Add
features in

SVM

Work
around in

application

light
medium
heavy

Find out the proper class initialization
timing

Develop new programming model to
aid configuration at coding time

• Spring scans package for Bean registering
• Obtain containing jar from resource file
• …

Add new solutions for original
unsupported features, e.g.
serialization/deserialization

Very difficult. Use logs to trace.

18

Build-time adaptation issues

.so

Run-time adaptation issues

Configuring RDR

• native-image-agent* can run the program and generate configurations
• convenient but has the coverage problem

• Define new annotations in Alibaba Dragonwell JDK to aid coding time
configurations of RDR
• Annotations must be added where a reflection call is made
• Every reflection target must be specified in annotations
• The javac compiler issues compilation errors for missing annotations

• Help find missing configurations at coding time

@ContainReflection(method="subString",paramTypes={"int"})
Method m = String.class.getDeclaredMethod(name, int.class);

* https://github.com/oracle/graal/blob/master/substratevm/CONFIGURE.md 19

https://github.com/oracle/graal/blob/master/substratevm/CONFIGURE.md

Build-Time Class Initialization

Input Program

Type Flow Analysis

Reachable Types/Fields/Methods

Initialization/Compilation

Relocatable ELF (.o)

Linker (ld)

Native Image (.so or .exe)

Target CodeImage Objects

Image Builder

Type Profile

Build-time class initialization

20

Saved into native image heap

Build-Time Class Initialization (cont.)

Build time Initialization
•Fast startup
•No overheads of class initialization check
•Reduce binary size
•May be unsafe and very difficult to debug

Runtime Initialization
•Slow startup
•Overheads of class initialization checks
•More reachable methods
•Safe

21

Build-Time Class Initialization (cont.)

• Manual configuration
• Specify a whitelist of build-time initialized classes
• Specify a blacklist of build-time initialized classes

• A whitelist of run-time initialized classes

• More classes are transitively initialized at build-time
• All super classes
• All accessed classes during executing the class initializer at build-time

22

sun.nio.ch. EPollArrayWrapper.epollWait(long pollAddress, int numfds, long timeout, int epfd)

A 100% CPU Occupied Issue

0io.netty.util.concurrent.ScheduledFutureTask.delayNanos:

An incorrect value can result 0

Should be initialized at runtime
but is mistakenly initialized at build time

Transitively initialized at build time

io.netty.util.concurrent.GlobalEventExecutor was configured to be initialized at build time in spring-boot-graal-
feature(https://github.com/aclement/spring-boot-graal-feature) which is now moved to spring-graal-native
(https://github.com/spring-projects-experimental/spring-graal-native) 23

https://github.com/aclement/spring-boot-graal-feature
https://github.com/spring-projects-experimental/spring-graal-native

Trace Transitive Initializations
• SVM has provided -H:+TraceClassInitialization

• Allows to trace the class initialization via bytecode instrumentation
• Unable to instrument all classes, e.g., some dynamically generated classes

• We further modified Hotspot VM to trace all initializations
• Observe the process of class initializations

• i.e., the creation and initialization of InstanceKlass instances by the HotSpot VM

• Print the stack trace of class initializations
• Locate the root class of the chain of class initializations

24

Runtime Performance

• Peak performance of SVM is only half of Hotspot VM on Sofa-Small
• Improve performance by two approaches:
• Improve GC
• Reduce safepoint checks

25

GC Problems

• We observed that
• The full GC occurred more frequently than the HotSpot VM
• Some GC operations were unexpected long

• Releasing unaligned chunks
• Full native image heap scanning

HotSpot VM SVM

#GC 794 3,617

#Full GC 0 367

Data were collected by sending 60,000 curl requests to drive Sofa-Small

26

GC Improvements

• Add multi-survivor to reduce the frequency of full GC.
• Asynchronously release unaligned chunks
• Card table based incremental scanning of the native image heap

27

Results of GC Improvements

Original SVM GC Improved SVM GC

#Full GC 29 1

Average Pause (s) 0.798 0.112

Data were collected by running Sofa-Mid

28

Reduce Safepoint Checks
• SVM adds more safepoint checks

than HotSpot VM
• Try to add safepoint checks using

the same strategy as JIT in the
HotSpot VM
• About 15% performance

improvement

public void demo() {

for (int i = 0; i < 1000; i++) {

sum = A[i] + B[i];

}

…

}

Safepoint

Safepoint

29

Summary

• Can SVM scale to large real-world applications?
• Not really.
• For Sofa-Large, SVM compiles 327,372 methods from 65,834 types. The input

fat jar is 123 MB, and the output binary executable is 500 MB. It takes on
average 4,436 seconds on a server with Intel(R) Xeon(R) Platinum 8163 CPU
@ 2.50GHz with 120 GB memory to complete the compilation. It consumes
too much time and resources for compilation.
• Fast analysis can significantly reduce compiling costs, but its correctness and

performance have not been evaluated thoroughly

30

Summary (cont.)

• How much effort do we need to run a JVM-based application in SVM?
• 25 man-months for Sofa-Large

• Will the SVM-based application run as stable as the JVM-based one?
• Yes. Sofa-Large has survived the traffic of double 11 online shopping festival

31

Summary (cont.)

• What startup time can we gain after static compilation? Is it worth the
effort?
• The startup time of Sofa-Large has been reduced from 60 seconds to 3

seconds.

• Is it possible to gain fast startup without sacrificing too much peak
performance?
• Yes. With improvements on GC and safepoint checks, the peak performance

of Sofa-Small is nearly the same as Hotspot VM.

32

Future Work

• Ensure stability
• Issues caused by unsupported JVM features such as RDR, build-time class

initializations and dynamic class loading

• Reduce output binary size
• The output of Sofa-Large is 500 MB.

• Larger than the total size of the JAR of Sofa-Large and the JDK

• Reduce adaption efforts
• More automated tools aiding adaptation

33

Thanks
Q&A
Ziyi Lin, Yifei Zhang, Wei Kuai, Sanhong Li
cengfeng.lzy@alibaba-inc.com, lingyue.zyf@alibaba-inc.com,
kuaiwei.kw@alibaba-inc.com, sanhong.lsh@alibaba-inc.com

34

