Autovectorization in Graal
Graal Workshop @ CGO 2020

Our journey implementing Autovectorization in
Graal CE on the #TwitterVMTeam

David Degazio (@elucentdev) University of Michigan, USA

February 22, San Diego, USA Niklas Vangerow (@nvgrw) Imperial College London, UK

Talk Outline

1.
2.
3.
4,
d.

Autovectorization recap
Implementation
Challenges

Examples and Benchmarks
Conclusion

Autovectorization Recap

Autovectorization Recap

e Modern processors feature
registers that hold vectors of
values and have vector
arithmetic operations.

e Analyze a program and find the
vectors.

e (enerate vector instructions.

e Usually found in loops.

Autovectorization Recap: An Example

void addMyArrays (int[] a, int[] b, int[]
for (int 1 = 0; 1 < 100, 1i++) |
c[i] = al[i] + bl[i];
}
}

C)

{

Autovectorization Recap: An Example

void addMyArrays (int[]

a, int[] b, int[]

for (int 1 = 0; 1 < 100; 1+=4) {

cli:14+4] = a[i:1+4]
}
}

+ bl1:1+4];

C)

{

Autovectorization Recap: An Example

add [rax], 1 movdgu xmml, Oxf12937b0
add [rax + 4], 2 movdqgu xmmO, [rax]
add [rax + 8], 3 paddd xmm0O, xmml
add [rax + 12], 4 movdqu [rax], xmmO

Scalar =———————» Vector

Implementation

The Algorithm

Available from:

Exploiting Superword Level Parallelism
with Multimedia Instruction Sets

Samuel Larsen and Saman Amarasinghe
MIT Laboratory for Computer Science
Cambridge, MA 02139
{slarsen,saman}@lcs.mit.edu

Abstract

Increasing focus on multimedia applications has prompted
the addition of multimedia extensions to most existing gen-
eral purpose microprocessors. This added functionality
comes primarily with the addition of short SIMD instruc-
tions. Unfortunately, access to these instructions is limited
to in-line assembly and library calls. Generally, it has been
assumed that vector compilers provide the most promis-
ing means of exploiting multimedia instructions. Although
vectorization technology is well understood, it is inherently
complex and fragile. In addition, it is incapable of locating
SIMD-style parallelism within a basic block.

In this paper we introduce the concept of Superword
Level Parallelism (SLP), a novel way of viewing parallelism
in multimedia and scientific applications. We believe SLP
is fundamentally different from the loop level parallelism
exploited by traditional vector processing, and therefore de-
mands a new method of extracting it. We have developed
a simple and robust compiler for detecting SLP that tar-

ister or memory location. In the past, such systems could
accommodate only small data types of 8 or 16 bits, mak-
ing them suitable for a limited set of applications. With
the emergence of 128-bit superwords, new architectures are
capable of performing four 32-bit operations with a single
instruction. By adding floating point support as well, these
extensions can now be used to perform more general purpose
computation.

It is not surprising that SIMD execution units have ap-
peared in desktop microprocessors. Their simple control,
replicated functional units, and absence of heavily-ported
register files make them inherently simple and extremely
amenable to scaling. As the mumber of available transis-
tors increases with ad in
datapaths are likely to grow even larger.

Today, use of multimedia extensions is difficult since ap-
plication writers are largely restricted to using in-line as-
sembly routines or specialized library calls. The problem is
exacerbated by inconsistencies among different instruction
sets. One solution to this inconvenience is to employ veo-

gets basic blocks rather than loop nests. As with tect
designed to extract ILP, ours is able to exploit parallelism
both across loop iterations and within basic blocks. The re-
sult is an algorithm that provides excellent performance in
several application domains. In our experiments, dynamic
instruction counts were reduced by 46%. Speedups ranged
from 1.24 to 6.70.

1 Introduction

The recent shift toward computation-intensive multimedia
workloads has resulted in a variety of new multimedia ex-
tensions to current microprocessors [6, 10, 16, 18, 20]. Many
new designs are targeted specifically at the multimedia do-
main [3, 7, 11]. This trend is likely to continue as it has been
projected that multimedia processing will soon become the
main focus of microprocessor design [§].

While different processors vary in the type and number
of multimedia instructions offered, at the core of each is a set
of short SIMD or superword operations. These instructions
operate concurrently on data that are packed in a single reg-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation of the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a feo

PLDI 2000, Vancouver, British Columbia, Canada.

Copyright 2000 ACM 1-58113-199-2/00/0006...85.00.

http://groups.csail.mit.edu/caqg/slp/SLP-PLDI-2000.pdf

torization tect that have been used to parallelize sci-
entific code for vector machines [5, 14, 15]. Since a number
of are ve this

promises good results. However, many important multime-
dia applications are difficult to vectorize. Complicated loop
transformation techniques such as loop fission and scalar ex-
pansion are required to paxallchzc loops that are only pax—
tially vectorizable [2, 4, 17]. al
compllorenrentlydogloments um f\mcmona.[lty This paper
presents a method for extracting SIMD parallelism beyond
vectorizable loops.

‘We believe that short SIMD operations are well suited
to exploit a fundamentally different type of parallelism than
the vector parallelism associated with traditional vector and
SIMD supercomputers. We denote this parallelism Super-
word Level Parallelism (SLP) since it comes in the form of
superwords containing packed data. Vector supercomput-
ers require large amounts of parallelism in order to achieve
speedups, whereas SLP can be profitable when parallelism is
scarce. From this perspective, we have developed a general
algorithm for detecting SLP that targets basic blocks rather
than loop nests.

In some respects, superword level parallelism is a re-
stricted form of ILP. ILP techniques have been very success-
ful in the general purpose computing arena, partly because
of their ability to find parallelism within basic blocks. In
the same way that loop unrolling translates loop level par-
allelism into ILP, vector parallelism can be transformed into
SLP. This realization allows for the parallelization of vector-

http://groups.csail.mit.edu/cag/slp/SLP-PLDI-2000.pdf

The Algorithm

For each basic block: c = a + b Isomorphic

1. Pairisomorphic instructions containing d = e + f Independent
adjacent memory references.

2. Extend set of pairs by finding instructions
using def-use chains and def-use chains of
step 1 pairs.

3. Combine the pairs into a set of adjacent
packs, until the set no longer changes.

4. Schedule packs for execution. d = c + f x Independent

C = a + b Isomorphic

The Algorithm

For each basic block: Program Packed Set
1. Pair isomorphic instructions containing (é) o B ali+0] { (}1, 3)’
adjacent memory references. 23; Z _ g I) e
2. Extend set of pairs by finding instructions (4) e = a[i+1]
using def-use chains and def-use chains of (5) £ = 6
step 1 pairs. (6) g =e + f
3. Combine the pairs into a set of adjacent (7) h = al[i+2]
packs, until the set no longer changes. (8) 3 =17
4. Schedule packs for execution. (9) k =h + 3

The Algorithm

For each basic block:

1.

Pair isomorphic instructions containing
adjacent memory references.

Extend set of pairs by finding instructions
using def-use chains and def-use chains of
step 1 pairs.

Combine the pairs into a set of adjacent
packs, until the set no longer changes.
Schedule packs for execution.

Program Packed Set

(1) b = al1+0] { (1, 4),

(2) ¢ =5 (4, 7),

(3) d =Db + c (3, 6), // u-d
(4) e = a[i+1] (6, 9), // u-d
(5) £ =6 (2, 5), // d-u
(6) g =e + £ (5, 8), // d-u
(7) h = al[i+2] }

(8) 3 =7

(9) k =h + 3

E.g. (1, 4) defines b and e, which are used by (3, 6).
(3, 6) uses c and f, which are defined by (2, 5).

The Algorithm

For each basic block: Program Packed Set
1. Pairisomorphic instructions containing (é) D i a[i+0] { (é’ g’ ;) !
adjacent memory references. 23; Z _ g b e 22: 5: 8; ’
2. Extend set of pairs by finding instructions (4) e = a[i+1])
using def-use chains and def-use chains of (5) £ = 6
step 1 pairs. (6) g =e + £
3. Combine the pairs into a set of adjacent (7) h = a[i+2]
packs, until the set no longer changes. (8) 3 =7
4. Schedule packs for execution. (9) k =h +]

The Algorithm

For each basic block: Program Vectorized Program
1. Pairisomorphic instructions containing E;; 2 i ;;1[1+O]
adjacent memory references. (3) d = b + c
2. Exjtend set ofpair§ by finding instructi.ons (4) e = al[i+1] q A[140] s
using def-use chains and def-use chains of (5) £ = 6
step 1 pairs. (6) g =e + £ g = ali+1] - 6
3. Combine the pairs into a set of adjacent (7) h = al[i+2]
packs, until the set no longer changes. (8) 3 =7 K afi+2] 7
4. Schedule packs for execution. (9) k =h + 3

Algorithm Alternatives

Why SLP?

e A starting point.
e Tried and tested, implemented in C2 and
LLVM to different extents.
e Later literature builds on top of SLP.
o Bottom-up SLP

o VW-SLP
o etc

The Algorithm: Implementation

IsomorphicPackingPhase

Vector Stamps

VectorReadNode / VectorWriteNode
VectorExtractNode / VectorPackNode

Scheduling + Canonicalization

598 Begin | | 756 AMD64Address

N

784 VectorRead

757 AMDB4Address

793 VectorRead

s

:>_<_,_,_J

133 +

759 AMDB4Address

813 VectorWrite

r"#“””_’J

136 LoopEnd

Phase Ordering

IsomorphiCPaCkingPhase invoked in LowTier appendPhase (new UseTrappingNullChecksPhase());

if (Options.Autovectorize.getValue(options)) {
final String listValue = Options.AVList.getValue(options).trim();

. List<String> list = new ArrayList<>();
Low tier features general memory ops. if (listvalue. isEnpty()) <
list = Arrays.asList(listValue.split(regex: ","));
¥

. appendPhase(new IsomorphicPackingPhase(

LOW tler meanS fewer paSSGS need tO SUppOrt new SchedulePhase(SchedulingStrate ARLIEST),
createAutovectorizationPolicies(),

VeCtOF StampS new MethodList(list, Options.AVWhiteliSk.getValue(options)),

NodeView.DEFAULT)) ;
}

appendPhase(canonicalizer);

HIR HIGH MID LOW LIR

Parser

lojelausy)
9p0DH

Dead code elimination Guard lowering Div optimization
Loop optimizations Conditional elimination Read fixing
etc Frame state assignment Isomorphic packing

etc Final schedule, etc...

Interface to Code Generator

Three new methods in LIRGeneratorTool

e emitPackConst
e emitPack
e emitExtract

Otherwise, we reuse existing emits

e emitAdd
e emitXor
° etc...

Supported Operations

Arithmetic Packing

Integer Float Load

Add Add Store
Subtract Subtract Constant Pack
Multiply Multiply Insert

And Divide Extract

Or Remainder

Xor Negate
Negate

Not

Stack Packing

uint32_t fool(_ m256i vec , int j)
{

Clang 5.0 intrinsic.

return (uint32 t) mm256 extract epi32(vec, j); (viewed using godbolt.org)

and rsp, -32

Aligns stack pointer/° sub rsp, 64

and allocates space. :
and edi, 7

vmovaps ymmword ptr [rsp], ymmO

Extracts a single
element from the\o mov eax, dword ptr [rsp + 4*rdi]

vector. mov rsp, rbp

http://godbolt.org

Challenges

Heuristics

195 Begin

‘239;\%‘6%&7&' i ddress | [203 Begin

| E—
254 VectorRead

e Too much vectorization is bad.]

e Heuristics let us know if a part of the code —
should be vectorized.

243 AN%%%\ddrcss 63 Write#Array: int STXN
\ i | [o]

T ..
|78Wrile#Array: int hoE#hadress

258 VectorRead I

260 1 | |261 | |259 | I
55 aca
762 VeviorPack e
20+
[247 ANDoAddress \ | 266 VectorExtract@2 | ‘257 VectorExtract@2 ‘

268 VectorWrite

137 Write#Array: int

‘38 Relurnl

Loop Unrolling & Bounds Check Elimination

e Graal features bounds checks for array
accesses.
e Disables loop unrolling!
e Hacks around this:
o Unroll earlier, before guards are
lowered.
o Remove bounds checks.

Bug: String Hashcode

The Problem: Memory corruption in strings, lots of
NoSuchMethodErrors.

Location: Traced to a hashCode() method for Latin1
strings.

Cause: Emitting instructions using the stack kind
instead of platform-specific kind.

Solution: Use platform-specific kind instead.

switch (kind) §
case BYTE:
masm.movb(dst,
break;
case WORD:
masm.movw(dst,
break;
case DWORD:
masm.movl(dst,
break;
case QWORD:
masm.movq(dst,
break;

Bug: Stack Pointer Addressing

The Problem: More memory corruption in strings!

Location: Traced to part of the regex matcher
implementation.

Cause: Using the previously-mentioned stack loads
and stores, rsp-relative addressing gets broken.

Solution: Replace dynamic use of stack pointer with
a stack slot.

while (i + elements * 2 <= numElements movKind.ge
movKind = twice(movKind);
elements *= 2;

final AMD64Addness SIc displace(getSourceAddress(c
final AMD64Addness dst displace(getDestinationAddr

addr2reg(crb, masm, movKind, asRegister(scratch), sr
reg2addxr(cxb, masm, movKind, dst, asRegister(scratch

stackOffset += movKind.getSizeInBytes();
i += elements;

Bug: Floating-Point Extraction

The Problem: Data corruption, invalid results from
vectorized floating point operations.

Location: AMD64Assembler.

Cause: VPEXTRQ does not support XMM
destination registers.

Solution: Check the register type and emit

VPSHUFD if the destination register is of XMM type.

VPEXTRQ.emit(masm, XMM, asRegister(result), asRegister(vector), selector);

final Register resultRegister = asRegister(result);

// VPEXTRQ does not support xmm result registers

if (resultRegister.getRegisterCategory().equals(AMD64.XMM)) {

VPSHUFD.emit(masm, XMM, resultRegister, asRegister(vector), selector);

} else {

I

VPEXTRQ.emit(masm, XMM, asRegister(result), asRegister(vector), selector);

Examples and Benchmarks

Sample Code

for (int i = 0; i < count; i++) {
tmp[l] = bUf[l]; vmovdgu ymm0O, YMMWORD PTR
} [r11+r10*4+0x10]
vmovdqu YMMWORD PTR
[r14+r10*4+0x10], ymmO
Excerpt from regex.Pattern#atom.

Pitfalls

for (int t = 16; t <= 79; t++) {
int temp = W[t-3] ~ W[t-8] ~ W[t-14] ~ W[t-16];
Wit] = (temp << 1) | (temp >>> 31);

Excerpt from SHA#implCompressO.

vextractil28 xmml, ymmO, Ox1
vpextrd eax,xmml, 0x2

XOr esi,eax
vextractil28 xmmO, ymmO, Ox1
vpextrd eax,xmm0, 0x3
vpextrd ebp,xmm3, 0x2
vpextrd rl13d,xmm3, 0x3
vextractil28 xmmO, ymm3, 0x1
vmovd rl4d, xmmO

mov DWORD PTR
mov DWORD PTR [rsp+0x144],rl3d
mov DWORD PTR [rsp+0x148],rl4d

vmovdgu ymm0, YMMWORD PTR [rsp+0x140]
vepxor xmm0O, xmm4, xmmO

Ionut Benchmarks

Sample Benchmarks (OpenJDK 14-ea+21-927 64-bit Server VM)

1000 B C
(No Superword)

B C2 (Superword)
Graal (No AV)

750
B Graal (No AV, No Bounds Check)
I Graal (AV, No Bounds Check)
500
250
Credit to lonut Balosin's JVM
JIT Performance
0 Benchmarks.

divide_2_arrays_elements sum_of all_even_ add_2_arrays_
array_elements elements

https://ionutbalosin.com/

Scimark

Scimark Benchmarks (OpenJDK 14-ea+21-927 64-bit Server VM)

5000 B C2
(No Superword)

B C2 (Superword)

4000 Graal (No AV)
B Graal (No AV, No Bounds Check)
3000 I Graal (AV, No Bounds Check)
2000
1000
0
FFI SOR Monte Carlo Sparse Matrix LU Composite

Multiply Score

Conclusion

Overall

e Autovectorization is hard.
e Heuristics make or break an implementation.

e Not all requirements are necessarily implemented already or foreseeable.
o Bounds check elimination is really important.

Overall

The pull request: David Degazio (@elucentdev)
https://qgithub.com/oracle/graal/pull/1692

Niklas Vangerow (@nvgrw)

Contribute: https://github.com/usrinivasan/graal

https://github.com/oracle/graal/pull/1692
https://github.com/usrinivasan/graal

