
Autovectorization in Graal
Graal Workshop @ CGO 2020
Our journey implementing Autovectorization in
Graal CE on the #TwitterVMTeam

David Degazio (@elucentdev) University of Michigan, USA

Niklas Vangerow (@nvgrw) Imperial College London, UKFebruary 22, San Diego, USA

Talk Outline

1. Autovectorization recap
2. Implementation
3. Challenges
4. Examples and Benchmarks
5. Conclusion

Autovectorization Recap

Autovectorization Recap

● Modern processors feature
registers that hold vectors of
values and have vector
arithmetic operations.

● Analyze a program and find the
vectors.

● Generate vector instructions.
● Usually found in loops.

Autovectorization Recap: An Example

void addMyArrays(int[] a, int[] b, int[] c) {
 for (int i = 0; i < 100; i++) {
 c[i] = a[i] + b[i];
 }
}

Autovectorization Recap: An Example

void addMyArrays(int[] a, int[] b, int[] c) {
 for (int i = 0; i < 100; i+=4) {
 c[i:i+4] = a[i:i+4] + b[i:i+4];
 }
}

Autovectorization Recap: An Example

...
movdqu xmm1, 0xf12937b0
movdqu xmm0, [rax]
paddd xmm0, xmm1
movdqu [rax], xmm0

...
add [rax], 1
add [rax + 4], 2
add [rax + 8], 3
add [rax + 12], 4

Scalar Vector

Implementation

The Algorithm

Available from:
http://groups.csail.mit.edu/cag/slp/SLP-PLDI-2000.pdf

http://groups.csail.mit.edu/cag/slp/SLP-PLDI-2000.pdf

The Algorithm

For each basic block:

1. Pair isomorphic instructions containing
adjacent memory references.

2. Extend set of pairs by finding instructions
using def-use chains and def-use chains of
step 1 pairs.

3. Combine the pairs into a set of adjacent
packs, until the set no longer changes.

4. Schedule packs for execution.

c = a + b

d = e + f

✅ Isomorphic

✅ Independent

✅ Isomorphic

❌ Independent

c = a + b

d = c + f

The Algorithm

For each basic block:

1. Pair isomorphic instructions containing
adjacent memory references.

2. Extend set of pairs by finding instructions
using def-use chains and def-use chains of
step 1 pairs.

3. Combine the pairs into a set of adjacent
packs, until the set no longer changes.

4. Schedule packs for execution.

Program Packed Set

(1) b = a[i+0]
(2) c = 5
(3) d = b + c
(4) e = a[i+1]
(5) f = 6
(6) g = e + f
(7) h = a[i+2]
(8) j = 7
(9) k = h + j

{ (1, 4),
 (4, 7),
}

The Algorithm

For each basic block:

1. Pair isomorphic instructions containing
adjacent memory references.

2. Extend set of pairs by finding instructions
using def-use chains and def-use chains of
step 1 pairs.

3. Combine the pairs into a set of adjacent
packs, until the set no longer changes.

4. Schedule packs for execution.

Program Packed Set

E.g. (1, 4) defines b and e, which are used by (3, 6).
 (3, 6) uses c and f, which are defined by (2, 5).

(1) b = a[i+0]
(2) c = 5
(3) d = b + c
(4) e = a[i+1]
(5) f = 6
(6) g = e + f
(7) h = a[i+2]
(8) j = 7
(9) k = h + j

{ (1, 4),
 (4, 7),
 (3, 6), // u-d
 (6, 9), // u-d
 (2, 5), // d-u
 (5, 8), // d-u
}

The Algorithm

For each basic block:

1. Pair isomorphic instructions containing
adjacent memory references.

2. Extend set of pairs by finding instructions
using def-use chains and def-use chains of
step 1 pairs.

3. Combine the pairs into a set of adjacent
packs, until the set no longer changes.

4. Schedule packs for execution.

Program Packed Set

(1) b = a[i+0]
(2) c = 5
(3) d = b + c
(4) e = a[i+1]
(5) f = 6
(6) g = e + f
(7) h = a[i+2]
(8) j = 7
(9) k = h + j

{ (1, 4, 7),
 (3, 6, 9),
 (2, 5, 8)
}

Program Vectorized ProgramFor each basic block:

1. Pair isomorphic instructions containing
adjacent memory references.

2. Extend set of pairs by finding instructions
using def-use chains and def-use chains of
step 1 pairs.

3. Combine the pairs into a set of adjacent
packs, until the set no longer changes.

4. Schedule packs for execution.

The Algorithm

(1) b = a[i+0]
(2) c = 5
(3) d = b + c
(4) e = a[i+1]
(5) f = 6
(6) g = e + f
(7) h = a[i+2]
(8) j = 7
(9) k = h + j

d a[i+0] 5

g = a[i+1] + 6

k a[i+2] 7

Algorithm Alternatives

Why SLP?

● A starting point.
● Tried and tested, implemented in C2 and

LLVM to different extents.
● Later literature builds on top of SLP.

○ Bottom-up SLP
○ VW-SLP
○ etc

The Algorithm: Implementation

IsomorphicPackingPhase

Vector Stamps

VectorReadNode / VectorWriteNode

VectorExtractNode / VectorPackNode

Scheduling + Canonicalization

Phase Ordering

IsomorphicPackingPhase invoked in LowTier

Low tier features general memory ops.

Low tier means fewer passes need to support
vector stamps.

HIGH LOWMIDHIR LIR

Dead code elimination
Loop optimizations
etc

Guard lowering
Conditional elimination
Frame state assignment
etc

Div optimization
Read fixing
Isomorphic packing
Final schedule, etc...

P
ar

se
r C

ode
G

enerator

Interface to Code Generator

Three new methods in LIRGeneratorTool

● emitPackConst
● emitPack
● emitExtract

Otherwise, we reuse existing emits

● emitAdd
● emitXor
● etc...

Supported Operations

Arithmetic Packing

Add
Subtract
Multiply

And
Or

Xor
Negate

Not

Integer
Add

Subtract
Multiply
Divide

Remainder
Negate

Float Load
Store

Constant Pack
Insert

Extract

Stack Packing

Aligns stack pointer
and allocates space.

Extracts a single
element from the

vector.

Clang 5.0 intrinsic.
(viewed using godbolt.org)

http://godbolt.org

Challenges

Heuristics

● Too much vectorization is bad.
● Heuristics let us know if a part of the code

should be vectorized.

● Graal features bounds checks for array
accesses.

● Disables loop unrolling!
● Hacks around this:

○ Unroll earlier, before guards are
lowered.

○ Remove bounds checks.

Loop Unrolling & Bounds Check Elimination

Bug: String Hashcode

The Problem: Memory corruption in strings, lots of
NoSuchMethodErrors.

Location: Traced to a hashCode() method for Latin1
strings.

Cause: Emitting instructions using the stack kind
instead of platform-specific kind.

Solution: Use platform-specific kind instead.

Bug: Stack Pointer Addressing

The Problem: More memory corruption in strings!

Location: Traced to part of the regex matcher
implementation.

Cause: Using the previously-mentioned stack loads
and stores, rsp-relative addressing gets broken.

Solution: Replace dynamic use of stack pointer with
a stack slot.

The Problem: Data corruption, invalid results from
vectorized floating point operations.

Location: AMD64Assembler.

Cause: VPEXTRQ does not support XMM
destination registers.

Solution: Check the register type and emit
VPSHUFD if the destination register is of XMM type.

Bug: Floating-Point Extraction

Examples and Benchmarks

Sample Code

vmovdqu ymm0,YMMWORD PTR
[r11+r10*4+0x10]
vmovdqu YMMWORD PTR
[r14+r10*4+0x10],ymm0

Excerpt from regex.Pattern#atom.

Pitfalls

vextracti128 xmm1,ymm0,0x1
vpextrd eax,xmm1,0x2
xor esi,eax
vextracti128 xmm0,ymm0,0x1
vpextrd eax,xmm0,0x3
vpextrd ebp,xmm3,0x2
vpextrd r13d,xmm3,0x3
vextracti128 xmm0,ymm3,0x1
vmovd r14d,xmm0
mov DWORD PTR
mov DWORD PTR [rsp+0x144],r13d
mov DWORD PTR [rsp+0x148],r14d
vmovdqu ymm0,YMMWORD PTR [rsp+0x140]
vpxor xmm0,xmm4,xmm0

Excerpt from SHA#implCompress0.

Ionut Benchmarks

Credit to Ionuț Baloșin’s JVM
JIT Performance
Benchmarks.

https://ionutbalosin.com/

Scimark

Conclusion

● Autovectorization is hard.

● Heuristics make or break an implementation.

● Not all requirements are necessarily implemented already or foreseeable.
○ Bounds check elimination is really important.

Overall

Overall

The pull request:
https://github.com/oracle/graal/pull/1692

Contribute: https://github.com/usrinivasan/graal

David Degazio (@elucentdev)

Niklas Vangerow (@nvgrw)

https://github.com/oracle/graal/pull/1692
https://github.com/usrinivasan/graal

