
Swapping in Graal native-
image to multiply Pants 
JVM tool performance

(by Danny McClanahan, at Twitter)



https://github.com/pantsbuild/pants

https://github.com/pantsbuild/pants


pants usage at Twitter
• pants is a build tool which Twitter contributes to extensively


• written in python and rust


• very strong support for jvm code, as we mainly use scala 
and apache thrift


• focuses a lot on integrating external tools


• lots of different ways to invoke subprocesses


• at twitter it is used on osx laptops and linux ci machines



mix-and-match jvm tool 
execution strategies in pants
• we can execute jvm code in a one-shot java subprocess, or a 

persistent nailgun instance


• nailgun avoids jvm startup and allows the jit to warm up


• nailgun is the default


• one-shot can be more appropriate for ephemeral 
environments

providing execution strategy options to pants for jvm tools



pants can orchestrate 
scalafmt parallelism

• scalafmt is a formatter and linter for scala code


• we would like to be able to ship this as a lint that runs 
on every commit


• scalafmt workload is embarassingly parallel, can be 
split by input files


• no dependencies, just some global settings


• some edits to the pants scalafmt task were required to 
use the parallelism described herein

https://github.com/scalameta/scalafmt



adding native-image as a 
pants jvm execution strategy
• it was incredibly easy to slot in graal native-image through 

the SubstrateVM as a pants jvm tool execution backend


• required no changes to the scalafmt tool!


• pants can now turn maven coordinates into a native-image 
executable of that jvm package automagically

scalafmt jar dependency declaration

@ShaneDelmore suggested this!



persistent JVM processes 
can be difficult to manage

• we would like to avoid having nailguns if possible


• takes up memory and (some) cpu on laptops


• it is significantly more difficult to manage a fleet of CI 
machines if we have to wait for more processes to start 
every time we spin up a CI box


• it can be more difficult to profile nailgun executions due to 
the shared heap



relying on a persistent JIT also means 
relying on the tool's own performance

• with nailgun, we're limited to the parallelism that the tool 
itself provides


• scalafmt has its own threading


• using native-image, we can scale the parallelism 
arbitrarily high with multiple processes!



scalafmt speedup through 
multiprocess parallelism 

• introduced a --files-per-process option to the 
pants scalafmt task


• observed a 25% speedup when using 150 files/process 
on the open source finagle project


• a warm nailgun converged to 15 seconds


• 150 files/process for native-image ran in 12 seconds, 
every time


• similar numbers for larger parts of the monorepo

NOTE: As noted in Q&A, this speedup could be obtained by connecting 
to a scalafmt nailgun server with multiple threads! The utility here is of 

not maintaining a persistent nailgun server (with a fixed heap size)!



why is multiprocess 
parallelism faster for scalafmt?
• formatting is embarrassingly parallel and IO-bound


• pants can scale the parallelism arbitrarily high to saturate 
the OS with IO


• it's difficult to expect each command line tool to implement 
its own threading optimally for every scenario


• pants knows beforehand how many files there are to 
format


• pants can bucket the input files so processes receive 
approximately similar workloads



generalizing the approach 
for distributed compiles

• noted earlier that it can be difficult to maintain persistent 
nailguns on a CI fleet


• twitter is working on remoting jvm compiles


• bazel already does this so google devs don't compile locally


• we use nailguns with threading in pants to compile scala right 
now


• we do this on individual ci machines, but if we try to 
distribute compiles, we need to maintain a nailgun on each 
machine, and this makes it much harder to provision



generalizing the approach for 
distributed compiles (with rsc!)

• rsc (https://github.com/twitter/rsc) is an experimental scala compiler 
focused on compilation speed (no codegen yet) -- incredibly well written


• for very interesting reasons, we can use rsc to completely parallelize the 
actual compilations 

• using native-image with rsc/scalac/javac means we don't have to maintain 
nailguns on a fleet of ci machines


• we can now remote individual compile processes, because starting up a 
jvm doesn't take any time at all


• we don't have to focus all of our compiles onto specific machines with 
warm nailguns -- can distribute across a fleet!

https://github.com/twitter/rsc


how can this be used with 
other tools?

• tools we have tried:


• scalafmt: no changes needed to make a native-image


• rsc: no changes


• scalac: some substitutions/reflection configs


• javac: will try this later this week


• zinc: OOMed, bytecode parsing errors (gone after 
1.0.0-rc12!), then ran into svm internal errors



how can other build tools 
copy this approach?

• they would first need to copy pants's fantastic jvm tool 
support


• pants makes it extremely easy to drop in nailgun vs 
native-image


• we can run apples-to-apples comparisons because the 
process executions are the exact same


• pants tasks or the jvm tools they wrap don't need to 
make any modifications to allow this!



takeaways

• native-image removes the difficulty of managing a 
persistent jvm process


• native-image gives the build tool parent process control 
over parallelism instead of relying on the tool itself to 
optimize for all possible use cases


• Twitter funds exciting open source experimental build, 
compiler, and VM work!

@hipsterelectronhttps://pantsbuild.org

https://pantsbuild.org

