Swapping in Graal native-
Image to multiply Pants

JVM tool performance
(by Danny McClanahan, at Twitter)

4

pantsbuild.org

Getting Started

etaling Pants Pants: A fast, scalable build system

Setting Up Pants

Tutorial 101231 00T w [resolve] U.3TTs
15:12:31 00:01 w [ivy] 0.381s
Common TaSkS X . X 15:12:31 00:01 Ipnvlaix?::gmﬁm%wsc
Pants is a build system designed for codebases that: 51201l 008 (sl compll] 00025
Pants for Organizations roren =R
o Are large and/or growing rapidly. 15:42:31 00:01 » [compile-jym-prop-command] 0.004s
15:12:31) [compile-prej omman: . S
, i o {54234 0001 pesiey S
Pants Basics e Consist of many subprojects that share a significant amount of code. SR G K
15:12:32 00:02 [isolation-zinc-pool-bootstrap] 0.004s
e Have complex dependencies on third-party libraries. [26] Gompiing 3 o sources n T trge (ciovalganpuldAohRlsiy-vitve).
Why USG PantS? . 48:42:32 100:02 [’Ntli‘]:f;r';vgnelinggzz?:sources in 1 target
e Use a variety of languages, code generators and frameworks. 15:12:32 00:02 b foomphel 16e o
Pants Con Cep‘ls 15:12:32 00:02 L (lor:r:{;;in%.sfg‘: SamaR e
15:12:32 00:02 » [compile] 1.472s
[6/6) Compiling 4 zinc sources in 1 target d jar).
BUILD fl 15:12:33 00:03 El?lsf;:ﬁg;n%%sz-fmum o Siacoe (raorohenetis ool st
I eS 15:12:33 00:03 » [zinc] 2.149s &
15:12:33 00:03 w [compile] 2.421s
Target Addresses Pants supports Java, Scala, Python, C/C++, Go, Javascript/Node, Thrift, Protobuf and | " ** i
 [stdout]
Third-Party Dependencies Android code. Adding support for other languages, frameworks and code generators ool s ol 2520057t oo s ot o

Pants Obtions is straightforward.

https://qgithub.com/pantsbuild/pants

https://github.com/pantsbuild/pants

pants usage at Twitter

* pants is a build tool which Twitter contributes to extensively
e written in python and rust

e very strong support for jvm code, as we mainly use scala
and apache thrift

* focuses a lot on integrating external tools
* |ots of different ways to invoke subprocesses

o at twitter it is used on osx laptops and linux ci machines

mix-and-match jvm tool
execution strategies in pants

* We can execute jvm code in a one-shot java subprocess, or a
persistent nailgun instance

* nailgun avoids jvm startup and aIIows the jit to warm up

dmcclanahan@tw-mbp-dmcclanahan:
X> ./pants -ldebug \
--jvm-platform-compiler=rsc \

compile.rsc --execution-strategy=graal --worker-count=1 \
testprojects/src/scala/org/pantsbui1d/testproject/javadepsonscalal

providing execution strategy options to pants for jvm tools

* nailgun is the default

e one-shot can be more appropriate for ephemeral
environments

pants can orchestrate
scalafmt parallelism

https://github.com/scalameta/scalafmt
e scalafmt is a formatter and linter for scala code

e we would like to be able to ship this as a lint that runs
on every commit

e scalafmt workload is embarassingly parallel, can be
split by input files

e NO dependencies, just some global settings

e some edits to the pants scalafmt task were required to

use the parallelism described herein ,

adding native-image as a
pants jvm execution strategy

e |t was incredibly easy to slot in graal native-image through

the SubstrateVM as a pants jvm tool execution backend
@ShaneDelmore suggested this!

* required no changes to the scalafmt tool!

cls.register_jvm_tool(
register,
‘scalaftmt’,
classpath=J§

JarDependency(org="com.geirsson’,
name='scalafmt-cli 2.11°,
rev="1.5.1"

scalafmt jar dependency declaration
e pants can now turn maven coordinates into a native- |mage

executable of that jvm package automagically

persistent JVM processes
can be difficult to manage

e we would like to avoid having nailguns if possible
e takes up memory and (some) cpu on laptops

* it is significantly more difficult to manage a fleet of CI
machines if we have to wait for more processes to start
every time we spin up a Cl box

e |t can be more difficult to profile nailgun executions due to

4

the shared heap

relying on a persistent JIT also means
relying on the tool's own performance

e with nailgun, we're limited to the parallelism that the tool
itself provides

e scalafmt has its own threading

e using native-image, we can scale the parallelism
arbitrarily high with multiple processes!

 J

scalafmt speedup through
multiprocess parallelism

e Introduced a --files-per-process option to the

pantS Scalafmt taSk NOTE: As noted in Q&A, this speedup could be obtained by connecting
to a scalafmt nailgun server with multiple threads! The utility here is of
not maintaining a persistent nailgun server (with a fixed heap size)!

 observed a 25% speedup when using 150 files/process
on the open source finagle project

 a warm nailgun converged to 15 seconds

e 150 files/process for native-image ran in 12 seconds,
every time

e similar numbers for larger parts of the monorepo ,

why Is multiprocess
parallelism faster for scalafmt?

e formatting is embarrassingly parallel and 10-bound

* pants can scale the parallelism arbitrarily high to saturate
the OS with IO

e |t's difficult to expect each command line tool to implement
its own threading optimally for every scenario

e pants knows beforehand how many files there are to
format

e pants can bucket the input files so processes receive
approximately similar workloads

generalizing the approach
for distributed compiles

e noted earlier that it can be difficult to maintain persistent
nailguns on a Cl fleet

e twitter is working on remoting jvm compiles
* bazel already does this so google devs don't compile locally

e we use hailguns with threading in pants to compile scala right
now

 we do this on individual ci machines, but if we try to
distribute compiles, we need to maintain a nailgun on each

machine, and this makes it much harder to provision y

generalizing the approach for
distributed compiles (with rsc!)

e rsc (https://github.com/twitter/rsc) is an experimental scala compiler
focused on compilation speed (no codegen yet) -- incredibly well written

e for very interesting reasons, we can use rsc to completely parallelize the
actual compilations

e using native-image with rsc/scalac/javac means we don't have to maintain
nailguns on a fleet of ci machines

e we can now remote individual compile processes, because starting up a
jvm doesn't take any time at all

e we don't have to focus all of our compiles onto specific machines with
warm nailguns -- can distribute across a fleet!

https://github.com/twitter/rsc

how can this be used with
other tools?

e tools we have tried:
e scalafmt: no changes needed to make a native-image
* rSC: no changes
e scalac: some substitutions/reflection configs

e javac: will try this later this week

e zinc: OOMed, bytecode parsing errors (gone after
1.0.0-rc12!), then ran into svm internal errors ,

how can other build tools
copy this approach?

e they would first need to copy pants's fantastic jvm tool
support

e pants makes it extremely easy to drop in nailgun vs
native-image

e We can run apples-to-apples comparisons because the
process executions are the exact same

e pants tasks or the jvm tools they wrap don't need to

make any modifications to allow this! y

https://pantsbuild.org @hipsterelectron
takeaways

e native-image removes the difficulty of managing a
persistent jvm process

e native-image gives the build tool parent process control
over parallelism instead of relying on the tool itself to
optimize for all possible use cases

e Twitter funds exciting open source experimental build,

Yy

compiler, and VM work!

https://pantsbuild.org

